
Static Enforcement of Timing Policies Using Code
Certification

C. Joseph Vanderwaart

August 7, 2006

CMU-CS-06-143

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Karl Crary (chair)
Robert Haper

Peter Lee
Stephanie Weirich (University of Pennsylvania)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Copyright c© 2006 C. Joseph Vanderwaart

This work was partially supported by the National Science Foundation (NSF) grants CCR-0121633 and CCR-
9984812, and by the Defense Advanced Research Projects Agency (DARPA) grant F19628-95-C-0050.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
07 AUG 2006 2. REPORT TYPE

3. DATES COVERED
 00-08-2006 to 00-08-2006

4. TITLE AND SUBTITLE
Static Enforcement of Timing Policies Using Code Certification

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,School of Computer
Science,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

157

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Keywords: Type systems, type theory, typed assembly language, certified code, certifying compi-
lation, type safety, timing, responsiveness, liveness, resource management

Abstract

Explicit or implicit, enforced or not, safety policies are ubiquitous in software systems. In the
many settings where third-party software is executed in the context of a larger client program, the
supervisor usually enforces a safety policy that prevents the foreign code from behaving in ways
that would disrupt the client, corrupt data or destabilize the system. Certified code provides a
static means for controlling the behavior of untrusted programs or components by bringing the
power of type systems and formal logic to bear on the problem. Code certification systems that
prevent bad memory accesses and enforce the abstractions provided by libraries and runtime
system interfaces have been well studied.

This thesis presents a system for certifying conformance to timing requirements. The approach
is simple, comprising an incremental change to an existing type system for assembly language, but
flexible in the set of policies it can enforce. Moreover, in principle, it can be extended to support
arbitrarily complex coding idioms. Focusing on a particular timing policy of interest, I describe
a compiler that produces certifiably compliant programs with no help from the programmer and
only a small impact on runtime performance. Later, I discuss the applicability of both the type
system and the compilation techniques to other timing and resource control problems.

i

ii

Acknowledgements

I would like to thank my thesis advisor, Karl Crary, for his years of help and guidance, and thesis
committee members Bob Harper, Peter Lee and Stephanie Weirich for their invaluable help with
this thesis and the research that went into it. Frank Pfenning, though not a member of my thesis
committee, contributed greatly to my graduate education and I thank him as well.

I also want to thank my fellow students at Carnegie Mellon, including Derek Dreyer, William Lo-
vas, Tom Murphy VII, Leaf Petersen, Susmit Sarkar and Dan Spoonhower. I gratefully acknowl-
edge the particular contribution of Aleksey Kliger, who wrote most of the front end of what I refer
to in this thesis as “my compiler.”

Portions of this dissertation were written while I was a visiting faculty member at Pomona Col-
lege. I thank my sometime mentor and longtime friend Kim Bruce for his advice and support
during that time, and Rett Bull, Yi Chen, Jim Marshall and Kathy Sheldon of the Department of
Mathematics and Computer Science at Pomona for their hospitality and friendship. I also thank
the computer science students of Pomona, Scripps and Harvey Mudd Colleges for the unforget-
table teaching experience of the year I spent with them.

I would like to thank my parents-in-law, Timi and Bob Hallem, for more love and support than I
could ever have expected, as well as for providing me with room and board during some of the
writing of this dissertation.

I also thank my parents, Polly and Peter Vanderwaart, and the rest of my family for encouraging
me to pursue my interest in computer science.

Finally, I express my deepest gratitude to Elissa Anyon Hallem, without whose unshakeable
faith that this thesis was possible this thesis would not have been possible.

iii

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Certified Code . 4

1.1.1 Classic Proof-Carrying Code . 4

1.1.2 Typed Assembly Language . 5

1.1.3 Foundationalism . 5

1.1.4 Static Safety in Operating Systems . 6
1.2 Timing Properties for Safety . 7

1.3 Thesis Overview . 8

2 TALT Background 11

2.1 Metalogical Foundational Certified Code . 11

2.1.1 LF, Elf and Twelf . 11

2.1.2 The Metalogical Skeleton . 12

2.1.3 Certified Binaries and Verification . 15
2.2 TALT . 16

2.2.1 TALT, XTALT and EXTALT . 16

2.3 MiniTALT . 19

2.3.1 Basic Syntax . 21

2.3.2 Type System . 22

2.3.3 Instruction Typing . 23

2.3.4 Operational Semantics . 25
2.4 Chapter Summary . 25

3 TALT-R: A Typed Assembly Language for Responsiveness 27

3.1 A Responsiveness Policy . 28

3.2 MiniTALT-R . 28

3.2.1 New Instructions . 28

3.2.2 The MiniTALT-R Abstract Machine . 29

3.3 Static Semantics . 29
3.3.1 The Constraint Subsystem . 30

3.3.2 The Virtual Clock . 31

3.3.3 Guarded and Singleton Types . 32

3.3.4 Expanding Singleton Reasoning . 34

v

3.4 Certification and Verification . 35

3.4.1 XTALT-R . 36

3.4.2 EXTALT-R . 37

3.5 Chapter Summary . 38

4 The TALT-R Constraint Logic 39

4.1 The Logic . 39

4.1.1 Terms and Formulas . 39

4.1.2 Defining Truth . 40

4.2 Decidability . 43

4.2.1 Proof Overview . 43

4.2.2 Interpretation of Terms . 44

4.2.3 Interpretation of Formulas . 46

4.2.4 Semantic Proofs . 48

4.2.5 The Decidability Theorem . 52

4.2.6 Implementation . 53

4.3 Incompleteness . 53

4.4 Chapter Summary . 54

5 Lilt: A Low-Level Source Language 55

5.1 Syntax . 55

5.2 Static Semantics . 57

5.3 Lilt Examples . 62

6 Yield Placement and Polling Techniques 65

6.1 Local Placement . 66

6.2 Global Placement with Call-Return Yielding . 68

6.3 Global Placement with Feeley Yielding . 69

6.4 Exceptional Placement . 72

6.5 Clocks and Polling . 72

6.5.1 Clocks . 73

6.5.2 Minor Yields . 74

6.5.3 The Minor Clock . 74

6.5.4 Tricks With Polling . 77

6.6 Chapter Summary . 78

7 Compilation of Lilt 79

7.1 Type-Directedness . 79

7.2 Conventions and Notations . 80

7.2.1 Variable Naming . 80

7.2.2 Minor Clock Notation . 81

7.3 Types and Data Representation . 81

7.4 Clock Specifiers . 83

7.5 Stacks, Register Files and Labels . 84

7.6 Translating Operands . 87

7.7 Compiling Expressions . 88

7.8 Complete Translation Rules . 90

vi

8 Diverse Safety Policies 97

8.1 Adaptive Responsiveness . 97

8.2 The Engine Abstraction . 98

8.3 Running Time . 99

8.4 Virtual Versus Real Clocks . 100

8.4.1 Unpredictability . 101

8.4.2 Better Static Approximations . 102
8.5 Bandwidth . 102

8.6 Stack . 103

8.7 Heap Allocation . 104

8.8 Chapter Summary . 106

9 Conclusions 107

9.1 Performance Evaluation . 107

9.2 Discussion and Future Directions . 112

9.2.1 Improvements to Implemented System . 112

9.2.2 Applicability . 114

9.3 Conclusion . 115

A Complete MiniTALT Semantics 117

A.1 Static Semantics . 117
A.1.1 ∆ ` c : K , ∆ ` Γ Static Term Formation . 117

A.1.2 c1 ≡ c2, Γ ≡ Γ′ Static Term Equivalence . 118

A.1.3 ∆ ` τ1 ≤ τ2, ∆ ` Γ ≤ Γ′ Subtyping . 118

A.1.4 ∆;Ψ;Γ ` o : τ Operand Typing . 120

A.1.5 ∆;Ψ;Γ ` d : τ → Γ′ Destination Typing . 120

A.1.6 ∆;Ψ;Γ ` I Instruction Typing . 120

A.1.7 Ψ;∆ ` I : τ block, ∆ ` P Block and Program Typing 122

A.2 Operational Semantics . 122

A.2.1 H,Vs, R ` o v Operand Resolution . 122

A.2.2 H,Vs, R ` d(v) H ′, V ′
s , R′ Destination Propagation 122

B Complete MiniTALT-R Typing Rules 123

B.1 ∆ ` c : K Static Term Formation . 123

B.2 ∆ ` ϕ prop Constraint Formula Formation . 123

B.3 c1 ≡ c2, ϕ1 ≡ ϕ2 Static Term and Formula Equivalence 123

B.4 ∆ ` ϕ true Constraint Truth . 124

B.4.1 Rule For Rational Extension . 124

B.5 ∆ ` τ1 ≤ τ2, ∆ ` Γ ≤ Γ′ Subtyping . 124

B.5.1 Unofficial Rules . 124
B.6 ∆;Ψ;Γ ` o : τ Operand Typing . 125

B.7 ∆;Ψ;Γ ` I Instruction Typing . 125

B.7.1 Unofficial Rules . 126

B.8 ∆;Ψ;Γ ` I inits r:mbox(τ) Object Initialization . 126

vii

B.9 Ψ;∆ ` I : τ block Block Typing . 127

C Rational Semantic Proofs 129

C.1 Linear Programming Duality . 129
C.2 Characteristic Linear Programs . 131
C.3 Rational Semantic Proofs . 133
C.4 Augmented Syntactic Proof System . 133

D Typing Rules for Lilt 135

viii

List of Figures

2.1 The skeleton of metalogical certified code. 13
2.2 TBF File Layout . 15
2.3 Overview of the TALT safety structure. 17
2.4 Machine-Specific Notation for IA-32 . 20
2.5 MiniTALT Program Syntax . 20
2.6 MiniTALT Type System Syntax . 22
2.7 Selected Instruction Typing Rules. 24
2.8 MiniTALT Abstract Machine Configurations . 24

3.1 MiniTALT-R Type System Syntax . 30
3.2 Formation Rules for Constraints . 31
3.3 Elementary Rules for Singletons . 33

4.1 Truth of Formulas . 43

5.1 Lilt Syntax . 56
5.2 Lilt Example: Recursive Fibonacci . 61
5.3 Lilt Example: Iterative Fibonacci . 61
5.4 Lilt Example: List Reversal . 62

6.1 A Flow Graph With a Join . 66
6.2 Fibonacci using Feeley Yielding . 71
6.3 Yields Under a Polling Strategy . 73
6.4 Code for a Minor Yield . 74
6.5 Fibonacci using Feeley Polling . 76
6.6 A Minor Yield with F on the Clock . 77
6.7 Resetting the Clock from F to R . 77

7.1 Translation of kinds and types (except function types) 81
7.2 Translation of function types . 82
7.3 Clock Specifiers . 83
7.4 A Lilt function’s stack frame . 85
7.5 Determining the Stack Type . 86
7.6 Determining the Register File Type . 86
7.7 Label and Block Types . 87
7.8 Translation Contexts . 88

8.1 Code for a Clock Check . 102
8.2 Typing Rules for a Stack Usage Policy . 104

ix

8.3 Typing Rules for a Heap Allocation Policy . 105

9.1 Normalized execution time (Y = 1 billion, L = 500, E = 100, H = 50) 107
9.2 Effect of Y on Yielding Performance . 109
9.3 Effect of L on Yielding Performance (Y =100M, E=100, H=50) 110
9.4 Effect of E on Yielding Performance (Y =100M, L=500, H=50) 111
9.5 Effect of L on Competition (Y =10M, E=100, H=50) 112

x

List of Tables

2.1 Variants of TALT . 19
2.2 MiniTALT Typing Judgment Forms . 23
2.3 MiniTALT Abstract Machine Evaluation . 26

3.1 New Typing Judgments of MiniTALT-R . 30

5.1 Lilt typing judgment forms . 58

9.1 Yields under Feeley Polling . 108
9.2 Yield Frequencies (Yields/sec) . 108

xi

xii

Chapter 1

Introduction

[An] operating system . . . is a program that keeps track of other programs in a computer and
gives each its due in space and time. — Guy L. Steele Jr. [65]

Computers are useful precisely because they can be programmed. The success of program-
ming depends on the ability of programmers to construct sequences of instructions whose be-
havior, when they are executed faithfully by hardware, is consistent with some design. This is
harder than it sounds, partly because although the basic operation of computer hardware is deter-
ministic, programs are executed in a complex environment of simultaneously running processes
multiplexed onto a machine that usually must serve multiple purposes for multiple users. This
arrangement is intended to improve performance (multiple processes can make more effective use
of a computer’s resources), usability (users like to have more than one application active at a time)
and modularity (programs responsible for different functions can be designed independently),
but these gains cannot be realized if the resulting environment is no longer predictable enough to
be programmed. To keep the complexity under control, we use operating systems, which supervise
application programs and prevent their uncontrolled interference with one another. The job of
an operating system necessarily involves the setting and enforcement of safety policies regarding
diverse aspects of program behavior, including memory access, privileged instruction execution,
and resource usage.

This relationship that exists between an operating system and the application programs run-
ning under it, characterized by the setting and enforcement of rules that restrict the behavior of
each process for the benefit of the whole system, is not unique to OS-application interaction. A
similar relationship can be found in sophisticated modern software systems based on the dynamic
linking and execution of third-party code, such as mobile agents, web applets or application plug-
ins: the principal roles are the supervisor, which is an application or server process the computer’s
owner trusts implicitly, and one or more subprocesses, which may be untrusted. The supervisor
sets up and enforces specific behavioral rules that the subprocess must obey; such a set of rules
is called a safety policy. (For the purposes of this thesis, I call it a “safety” policy even if it is not
a safety property in the sense of Lamport [40] or of Alpern and Schneider [2]. This is consistent
with the usage of the term in the certified code literature.) It is worth noting that safety policies
are often complex and application-specific, particularly when the supervisor-subprocess relation-
ship exists between two user-level processes, or between an application and an untrusted module
that runs as part of the same process. The safety policy of an operating system is generally as
permissive as the operating system implementor can allow.

Indeed, the lower the level of abstraction at which one observes the operation of a computer,

1

2 CHAPTER 1. INTRODUCTION

the more permissive the safety policy appears to be. The native instruction set of a general-
purpose microprocessor (such as Intel’s IA-32, also known as x86) is a language with a very small
number of types: IA-32 has three different integer types, three different floating-point types, and
nothing else. Furthermore, all of the primitive operations of the language — address calculations,
loads, stores and ALU and FPU operations — are syntactically restricted so that any well-formed
application of any operation to any value has a well-defined outcome [38]. In fact, we can say
that as far as the processor architect is concerned, machine language is type safe — this counter-
intuitive assertion is accurate because the hardware designer is not concerned with any notion of
safety other than that the machine always behaves according to its specification.1

When a hardware implementation of IA-32 is used for a nontrivial purpose, such as serving as
the CPU of a personal computer, a different notion of safety is called for. Application programs
are designed in relative isolation but are executed in an unforeseeable and continually changing
context of other concurrent processes. To control the interactions between processes, operating
systems impose certain requirements on program behavior: a process must not access memory
outside of its designated address space, and it must not attempt to perform certain “privileged”
operations. Any violation of these rules is detected at run time by the hardware, and the operat-
ing system abruptly and unapologetically terminates the offending process. The rules, and their
enforcement by the operating system, greatly limit the range of environmental conditions and
events an application programmer must anticipate. This makes it possible to write programs that
respond to these conditions predictably, even though the behavior of the other processes on the
system cannot be known in advance.

As is well known, most operating systems achieve this end by constant monitoring of every
running process to detect violations of its safety policy and forcible correction of errant behavior.
Indeed, for a long time conventional wisdom held that this was the only way to do it: after all,
conformance to any nontrivial safety policy is an undecidable property of program behavior, so
detecting potential safety violations before run time seems impossible. The advent of certified code,
however, has made it clear that this inference is not valid: in particular, it is possible to design re-
finements of the overly permissive type system of machine language that are strong enough to rule
out many forms of unacceptable behavior. Furthermore, using these type systems, static rejec-
tion of potentially unsafe programs can be achieved by requiring programs to be accompanied by
additional information that establishes their safety.

Enforcing safety policies by certification rather than run-time monitoring has most of the ben-
efits of type-safe programming in general. Although hardware support for detecting violations
lessens the cost of monitoring a running program (catching references to unmapped memory
pages involves a considerably smaller overhead on most hardware architectures than, say, the
tag-checking necessary to implement dynamically-typed languages like Scheme), some expense
must be incurred when transferring control to a user process in order for the OS to be ready for
anything that process might do. Furthermore, since the hardware does play such a critical role, the
range of possible safety policies an OS can implement (and consequently the range of reliability
guarantees it can make to application developers) is limited by the capabilities of the hardware;
in contrast, the set of policies implementable by certification is relatively independent of the hard-
ware. Finally, the actions taken by an OS in response to a misbehaving process are often drastic
and disruptive, and the unexpected termination of one process due to a safety violation can often
do harm to other processes that interact with it. By ruling out bad behavior before allowing a
program to run, an operating system could reasonably promise users that the program will not be
prematurely terminated.

1In fact, anecdotal evidence suggests that even this is too strong to accurately describe chip designers’ goals.

3

To date, advocates of safety by certification have focused their rhetoric on so-called “mobile
code”, and even more specifically “untrusted mobile code”. This apparent restriction of focus
tends to undersell the technology, because after all, all software is mobile — and most of it is

untrusted. It is very rare that a program resides and runs on the same computer from the mo-
ment it is created until it is discarded for good. Furthermore, almost all software must pass from
one human owner to another at some point in its life cycle. Sometimes these transfers between
individual or corporate owners are well-controlled commercial transactions, but in an increasing
variety of scenarios, computers execute code from sources their owners do not know well. Often
this is the result of an explicit decision by the owner: it is common practice for users to download
programs from unfamiliar web sites, and install and run them even though they have no reason
to trust the authors’ intentions, skills, or choice of development tools. On occasion, untrustworthy
code is executed at a user’s apparent request, but as a result of confusion or accident: many e-mail
worms spread this way.

Of course, a growing number of applications involve sending code from one machine to an-
other for automatic execution, without any human participation in the process. This, as opposed
to the above, is the phenomenon uncontroversially referred to as mobile code. Most computer
users have observed mobile code in action: ever since the late 1990’s, many World Wide Web
pages have contained embedded “applets” that are executed by browsers with the aid of a Java
Virtual Machine implementation [42], and many if not most Web pages today contain embedded
code in Javascript or a similar language to be interpreted by the browser.

Some applications of mobile code use it in ways that are not directly visible to users. Mo-
bile agents, programs that autonomously migrate from host to host to take advantage of local-
ized resources, have achieved buzzword status over the past decade or so [41, 7]. More recently,
grid computing has emerged as a powerful paradigm that relies heavily on mobile code. For the
purposes of this thesis, “grid computing” simply means large-scale distributed computing on a
heterogeneous collection of computers connected by the Internet. This includes scientific com-
puting endeavors such as SETI@Home [62] and Folding@Home [24] as well as CMU’s ConCert
infrastructure [9] and a host of others being developed in academia and industry. Since the hosts
participating in a grid computation are owned by numerous different people or organizations
and located all over the world, the task of distributing application code to all of the participants
is nontrivial. In the case of general grid computing infrastructures like ConCert (as opposed to
single-purpose grids such as the SETI@Home network), the automatic transport and execution of
mobile code — untrusted mobile code, in fact — is essential. Indeed, ConCert programs are de-
signed to start on a single host and recruit additional hosts as they run, spawning new copies of
themselves that migrate to new locations in much the same way mobile agents do.

The security risks associated with automatically executing untrusted code are hard to over-
state. The proliferation of e-mail worms that infect a computer when the user opens an attached
file shows that even well educated human users can be tricked into running harmful programs.
Removing the user from the scenario and executing downloaded software automatically (as mo-
bile code hosts do) without some kind of security measure would clearly be a disaster. The stan-
dard advice to users regarding e-mail worms — not to open attachments unless they both trust
the apparent sender and were expecting the message — is hard to apply to machines that are sup-
posed to play host to mobile agents or ConCert grid programs. After all, mobile agents arrive for
execution unsolicited and without warning, and they often do not come directly from their place
of origin. Furthermore, it is often necessary or desirable that hosts be willing to execute code
whose authors they do not know.

4 CHAPTER 1. INTRODUCTION

1.1 Certified Code

Static safety and security verification of software has become increasingly commonplace over the
past decade, beginning with the introduction of Java by Sun Microsystems in 1995–6 [66]. De-
signed expressly for network-based computing, Java technology is based on an object-oriented
virtual machine (the Java Virtual Machine or JVM [42]) whose high-level bytecode language was
intended for use as an interchange format for software. Security was a major selling point: the
Java Virtual Machine could be configured to support a range of different security policies, and
because the JVM language was supposed to be type safe, a Java program could not interact with
the network or file system except through the carefully designed interfaces provided by the vir-
tual machine. To ensure that no Java bytecode, no matter how malicious or incompetent its author,
could circumvent the protection of the type system, programs would be verified prior to execution.

The central role of the Java type system in the security of Java-based software inspired many
detailed and critical investigations into whether or not it was sound. The results, published in
papers with titles like “Java is not type-safe” [61] and “Java is type-safe — probably” [20], showed
mainly that the Java type system was large and complex, with many dark corners in which un-
safety might be overlooked. The resistance of Java to formal analysis no doubt helped to fuel
the trend toward foundationality in certified code, described later in this section. In the end, for-
mal analysis of Java led to positive results for subsets of the type system [20, 64, 26] as well as
uncovering a number of bugs (e.g., [61, 25]).

1.1.1 Classic Proof-Carrying Code

The foundations for more formal code certification were laid in 1996-7 in the sequence of papers
by Necula and Lee that introduced proof-carrying code (PCC) [52, 50, 51]. Among other things,
these papers established the basic vocabulary of the field, including the terms code producer, code
consumer, and safety policy. In this original approach to PCC (which I often call “classic” PCC
to distinguish it from the variations that appeared subsequently), an operational semantics for
a safe but undecidable subset of assembly language is used as an informal guide to the manual
construction of a program called a verification condition generator (VCGen). The VCGen analyzes
the code to be certified and computes a first-order formula that implies the safety of the code (the
verification condition or VC); a theorem prover is then used to generate a formal proof of the VC
which constitutes the safety evidence for the program. The code consumer validates the certified
binary by running the VCGen to extract the code’s verification condition and then using a proof
checker to verify that the certificate is a valid proof of the VC.

Necula and Lee’s early experiments applied the PCC technique to packet filters hand-coded
in assembly language [52]. Necula’s Ph.D. thesis developed certifying compilation, focusing on a
high-level language called Safe-C [54]. Years later, a very similar certification infrastructure was
the target of a certifying compiler for Java, called Special J, developed by Cedilla Systems [8]. A
striking difference between the certification of hand-coded packet filters and that of full-fledged
Java programs, other than the matter of scale, is that the formalized logical discourse (verification
conditions and proofs) of the early experiments was conducted at a very low level of abstraction,
determined almost entirely by a fairly realistic operational semantics for the machine. The certi-
fication in Special J, by contrast, made heavy use of a collection of language-specific predicates,
whose meanings were defined only by a set of ad hoc axioms; these predicates and axioms con-
nected the instruction-by-instruction actions of the machine code with the higher-level Java type
system that guaranteed the safety of the source program. Other researchers would later question

1.1. CERTIFIED CODE 5

the wisdom of removing the formalized logical activity so far from the hardware level of abstrac-
tion.

1.1.2 Typed Assembly Language

The use of type systems for code certification was made quite explicit with the introduction of
typed assembly language (TAL) by Morrisett et al. in 1999 [47]. The original TAL paper concerned
a language based on a generic RISC-like architecture and showed how various programming id-
ioms, including procedure linkage conventions, could be described using typing constructs that
amounted more or less to System F with sums, products and existential types. The abstract ma-
chine in the first TAL paper had no stack; this technical limitation was overcome in Stack-Based
TAL (STAL) [46], enabling a concrete implementation on the Intel IA-32 called TALx86 [45].

The theory and the implementation of TAL had a good deal of influence over certified code
research that followed, including the present thesis. The deep connections it forged between con-
ventional type theory and low-level code have allowed ever more complex and powerful type
systems to be brought to bear on code certification problems. In addition, the implementation of
TALx86 has been used in a number of subsequent research endeavors and has even proven robust
enough to serve as the target of a full-scale ML compiler [56].

1.1.3 Foundationalism

Classic PCC and TALx86 introduced a certain degree of formalism to code certification, but it was
soon apparent that there was room for more. In 2001, Appel et al. kicked off the trend of foun-
dationalism in certified code by observing that despite the intentions of Necula and Lee and of
Morrisett et al. to base their systems on sound type theory and logic, the security of these systems
depended on the correctness of large amounts of code and ad hoc theory that were verified only
informally or not at all.2 Specifically, Appel noted, it would have been “a daunting task” to metic-
ulously check every aspect of the type safety proof for TALx86 (even though the simpler abstract
TAL had been subjected to rigorous scrutiny), let alone to formally verify the software implenting
TAL’s type-checker or PCC’s VCGen [3].

Appel et al.’s foundational proof-carrying code (FPCC) aims to place code certification on a
sound formal footing by reducing as much as possible the trusted computing base, that body of
code and theory that one needed to trust in order to believe in its security guarantees. The “proof”
attached to an FPCC program is nothing other than a machine-checkable proof (in higher-order
logic) of the proposition that that program obeys the safety policy. The main problem with this
enterprise was one of scale: how in the world could a proof of safety for a practical-sized program
be automatically generated, let alone represented compactly enough to be transmitted with mobile
code over a network and verified in a reasonable amount of time?

A type system for machine language played a central role in the solution developed by Appel
et al. They defined a semantic model of the types in their system, which amounts to defining a logic
predicate for each type characterizing the structure of values of that type [4]. The model, together
with a formal specification of the operational semantics of the machine, allowed the soundness of
each typing rule to be proven as a lemma. A proof of safety for a given program could then be
constructed from a typing derivation for that program, replacing application of typing rules with
applications of the corresponding lemmas.

2“Ad hoc” is not pejorative here. The basic principles of type theory were considered to rest on solid ground; it was
the metatheoretic work concerning the specific properties of PCC and TAL that was potentially in question.

6 CHAPTER 1. INTRODUCTION

Constructing formal semantic models and proving them correct in machine-checkable higher-
order logic is not easy, and was perceived as the weak link in FPCC. In 2002, Hamid et al. [28,
29] proposed an alternative: instead of formalizing proofs of type safety in what amounted to
a denotational semantics for a low-level type system, they formalized a syntactic safety proof in
the style of Wright and Felleisen [71]. This style of proof was already known to be much more
tractable than model-theoretic soundness proofs. Once the soundness of the system as a whole
was proven, the proof obligation for any specific program was reduced, as before, to showing that
it was well-typed.

The proofs in the syntactic FPCC of Hamid et al. were encoded in the Calculus of Inductive
Constructions [55]. The next year, Crary unveiled TALT, a “foundational typed assembly lan-
guage” with a machine-checkable safety proof encoded in the Twelf meta-logic [14, 13]. As I will
explain later on, TALT was not only the most advanced and expressive type system for machine
language to date, but served a higher purpose as the underlying type system of the first imple-
mented instance of a metalogical foundational certified code framework. As this framework pro-
vides the context for all the technical work in this thesis, my first order of business will be to
describe its operation; this exposition makes up Chapter 2 of the thesis.

1.1.4 Static Safety in Operating Systems

The notion of enforcing safety policies by static rather than dynamic means seems to have re-
ceived only sporadic interest from the operating systems community until fairly recently. This is
presumably due to the historical focus on performance as the primary goal of operating systems
research and a widespread belief that static policy enforcement hurts performance; in recent years,
however, security has emerged as an issue of paramount concern [67].

The most-cited example of an operating system leveraging the static safety properties of a
programming language is SPIN [6], an extensible operating system that allows applications to
extend the kernel with specialized paging algorithms, network protocol implementations, and
other performance-enhancing modules written in the type-safe Modula-3 language. As noted, the
original PCC experiments conducted by Necula and Lee focused on the ability to link untrusted
code into an operating system kernel safely.

Singularity is an operating system under development at Microsoft Research [37]. It differs
from SPIN in that not only the microkernel and all device drivers and system services, but all user-
level applications as well, must be written in a type-safe language and verified prior to execution.
In defense of this somewhat radical shift, the Singularity team conducted some measurements
of the costs of hardware-based dynamic versus software-based static isolation of processes, the
results of which led them to declare that the benefit of eliminating the overhead of dynamic safety
policy enforcement is significant [1].

Admittedly, the dynamic approach has a substantial head start, and may have influenced soft-
ware and hardware design too much for static approaches to be adopted in commercial operating
systems any time soon. On the other hand, type-based certification makes this otherwise impossi-
ble idea a potentially viable alternative and has not existed for very long compared to the amount
of time the systems community has spent engineering systems based on the dynamic approach.
Whether these recent developments are the leading edge of a major change in computer software
architecture remains to be seen.

Even if the policies of mainstream operating systems continue to be dynamically enforced for
the foreseeable future, many applications that rely on untrusted third-party code have policies of
their own that they must enforce. Furthermore, these policies might be concerned with aspects

1.2. TIMING PROPERTIES FOR SAFETY 7

of program behavior over which the operating system does not provide direct control, or appli-
cations may require a finer degree of control than the operating system offers. In situations like
these, code certification can provide a means to enforce the application-specific policies.

1.2 Timing Properties for Safety

In order for all of the processes on a computer system to function properly, it is important that
each of them be given enough time in which to run. In addition, for applications requiring user
interaction or real-time control of devices, it is important that the intervals during which a given
process is not running be short enough to allow that process to react to events in a timely manner.
To address these requirements, operating systems manage the scheduling of processes. Time is
allocated to processes in quanta known as time slices: at the start of a time slice, the OS hands over
almost total control of the CPU to a user process with the understanding that it will only keep
that control for a certain amount of time. At the end of that interval, if the user process has not
performed any action to return control to the operating system, it is preempted; the state of the
process is saved and it becomes dormant until the system chooses to give it another time slice.

It is usual to view this multiplexing of processes onto the CPU as a resource allocation task
performed by the operating system. However, it can also be viewed as a part of the problem
of enforcing rules of behavior for processes. As I have said, the operating system must set up
and enforce behavioral rules that programs running on the machine must obey. The requirement
that a program not keep control of the CPU for too long at a time is not fundamentally different
from the requirement that it access only its own memory pages or that it refrain from performing
privileged instructions; in all of these cases, one program’s failure to comply with the operating
system’s policy might affect other programs’ behavior in ways the other programs’ authors could
not have anticipated. Therefore, I choose to see pre-emption as an enforcement mechanism for timing
policies. The policy states that no program shall keep continuous control of the CPU for more than
the length of one time slice, and the enforcement mechanism relies on detecting violations at run
time and forcibly correcting an offending program’s behavior.

It is natural to ask, then, whether it is possible to enforce timing policies such as this one stat-
ically. Is it possible to use code certification to guarantee before running a program that it does not
violate the policy? If it is possible, then doing so could relieve operating systems of the responsi-
bility of enforcing the rules by detecting violations at run time — if a program passes the necessary
verification prior to running, there will be nothing to detect. Just as the static process isolation in
Singularity eliminates the need for hardware-supported memory protection, static enforcement of
timing policies could eliminate the need for preemption.

Simplifying operating system implementation is only the beginning. Fundamentally, an oper-
ating system must regard non-certified programs with unreserved suspicion. They must be treated
as adversaries and firmly regulated in order to keep the system as a whole secure. Certified pro-
grams, on the other hand, can be expected to play fair, and can therefore be given some freedom
to control their own execution. A certified program can be trusted to choose, within appropriate
limits, exactly when it will yield. Consequently, it can be given the responsibility of saving its own
state before a context switch – which it knows how to do better than the OS can – and can arrange
to avoid yielding at inconvenient times, such as inside short-lived loops where the loss of data
from the cache might be particularly disruptive.

Certification-based enforcement of yielding policies is consistent with the so-called “pay-as-
you-go” principle, which encourages the design of systems in which one does not incur costs
for unused features. The overhead of preemptive multitasking is generally understood to be a

8 CHAPTER 1. INTRODUCTION

significant but unavoidable cost of guaranteeing the stability and reliability of a computer system.
Many programs, though, such as those that perform a lot of blocking I/O operations or spend a
lot of time waiting for GUI events, tend not to hold on to the CPU for very long. The overhead of
preemption would be unnecessary for such programs, if only the scheduler could identify them
with certainty. In traditional systems with non-certified executables, this clearly cannot be done.
However, if programs were known in advance to be cooperative, the overhead of arranging for
preemption by a timer interrupt that will never occur could be avoided. Certification of timing
policies would make this possible.

The idea of enforcing timing policies with code certification goes back all the way to Necula
and Lee, who observed that PCC could be used to guarantee bounded running time of programs
[51]. In Crary and Weirich’s type theory LXres and assembly language TALres, the type of a func-
tion specifies its running time, often as a function of the structure of its arguments [18]. More re-
cently, Naik [49] described a Typed Interrupt Calculus, a core language for interrupt programming
whose type system guarantees that all interrupts will be handled before their associated dead-
lines. To date, none of these approaches has produced a workable solution for general-purpose
programming on a realistic scale. Nonetheless, the basic structures needed for reasoning about
time introduced by Necula and Lee and picked up by Crary and Weirich and by Naik form the
basis for my work as well.

Some timing properties can be enforced using a type system based on linear logic. In particular,
Hofmann has shown that any program in a certain linear λ-calculus denotes a polynomial-time
function [35]. This is a weaker property than any realistic safety policy, since even a constant-time
function can take longer to finish than a supervisor is willing to wait. Also, the linear type system
is not particularly user-friendly. The real advantage of Hofmann’s calculus is that it controls space
usage of programs by forbidding them to allocate new storage; the linear typing discipline allows
preallocated space to be reused in a type-safe way. Hofmann and Jost later showed how to allow
a limited amount of allocation while controlling the total memory usage of programs [36]. The
issue of space usage was also addressed by Aspinall et al. in a logic for reasoning about resource
usage in a fragment of JVM bytecode [5].

1.3 Thesis Overview

My claim in this thesis is that static enforcement is possible for a wide range of timing policies.
Indeed, I claim that the complexity of enforcing this policy is a small increment over that of
enforcing memory safety. Finally, I claim that certifiable adherence to the policy presents no
burden to most application programmers and requires only a modest contribution from the
implementors of the development tools they use.

The technical content of this thesis begins in Chapter 2 with an overview of the Crary-Sarkar
metalogical code certification framework and the TALT type system. The next five chapters com-
prise a case study in certifying compilance with a specific timing policy. Chapter 3 describes this
policy, called responsiveness, and the type system called TALT-R that I developed to certify pro-
grams that obey it. Chapter 4 explores the metatheory of a key subsystem of TALT-R.

The generation and certification of responsive programs is laid out in the next three chapters.
To support my claim that certifiable responsiveness presents no burden to most programmers, I
consider the problem of generating compliant binaries without the benefit of any timing-related
input from the programmer, because programmers of traditional preemption-based systems are

1.3. THESIS OVERVIEW 9

not accustomed to providing any. Chapter 5 describes a timing-ignorant typed intermediate lan-
guage that will serve as the source language in my discussion of compilation. In Chapter 6 I
covers the basic techniques I have worked out for making programs certifiably responsive, and
Chapter 7, which gives a formal translation from the language of Chapter 5 to TALT-R.

Chapter 8 discusses the application of the ideas in TALT-R to certification of other timing poli-
cies and to other resource control problems. In Chapter 9 I present the results of some empirical
experiments with TALT-R, discuss possible directions for further work on this subject, and give
my final conclusions.

10 CHAPTER 1. INTRODUCTION

Chapter 2

TALT Background

A language design can no longer be a thing. It must be a pattern — a pattern for growth —
a pattern for growing the pattern for defining the patterns that programmers can use for their
real work and their main goal. — Guy Steele [65]

The code certification machinery I have designed to enforce timing policies is based on the
existing body of work by Crary and Sarkar on a so-called metalogical approach to foundational
certified code [15], including the type system TALT [14]. In this chapter I review the basic ideas
necessary to understand what this means, and sketch the type system and semantics of TALT.
Readers familiar with Crary and Sarkar’s work may find that this chapter is mostly review; how-
ever, it establishes the meanings of several terms that I will use throughout the remainder of the
thesis.

2.1 Metalogical Foundational Certified Code

The metalogical approach to foundational certified code was developed concurrently with the
TALT type system, and the needs of each influenced the design of the other. It is a mistake, though,
to think of the formalized metatheory developed by Crary and Sarkar simply as “the TALT safety
proof,” however common it may be to call it that. The intent was much more general: to formalize
a single, foundational safety policy, in a logic capable of proving the safety of as wide a variety of
programs as practical. The preferred way to structure safety proofs for programs was to base them
on type systems; TALT is merely one point in the vast design space of type systems for machine
language whose safety can be proven within this framework. It serves (among other purposes) to
demonstrate how type safety proofs in the metalogical framework may be constructed and as a
starting point for the design of more expressive or more specialized type systems.

2.1.1 LF, Elf and Twelf

The “metalogical” aspect of Crary and Sarkar’s approach to foundational certified code lies in its
use of the Twelf metalogic for the expression of the safety policy and the statements and proofs
of all safety theorems. It appears to be common in colloquial speech among users of the Twelf
system to say that these definitions and proofs are conducted “in LF,” but my opinion is that this
leads to confusion. For the purposes of this thesis, therefore, I make the following definitions.

LF, the Edinburgh Logical Framework, is either the type theory first given that name by Harper,
Honsell and Plotkin [31] or its subsequent reformulation by Harper and Pfenning [32]. LF is

11

12 CHAPTER 2. TALT BACKGROUND

instantiated by specifying a set of uninterpreted constants, each with a type or kind as appropriate;
this information comprises a signature. The LF type theory itself is too weak to be of practical
interest without a nontrivial signature.

Elf is a logic programming system based on LF. An LF signature is treated as a logic pro-
gram; Elf attempts to answer queries of the form “Is there a substitution of closed terms for the
free variables in A such that the resulting type is inhabited?” by conducting a search based on
unification and backtracking. The name “Elf” is rarely heard nowadays, since the software imple-
menting it was expanded considerably and renamed “Twelf” circa 1999. Nevertheless, I will refer
to LF signatures (or fragments thereof) that are intended to be executed by the logic programming
interpreter as Elf logic programs.

Twelf is the current generation of the Elf software package [59]. It includes all of the logic
programming functionality of Elf, plus the capability to check that a logic program is total (roughly,
that all queries of a certain form have answers). In addition, it includes a theorem prover capable
of proving facts about the existence of LF terms of particular types — however, this facility is not
used at all in the Crary-Sarkar certified code methodology, so I will not discuss it further.

The Twelf meta-logic is the method of using the totality checker of Twelf as a proof assistant
[30]. Under a slight variation of the well-known programs-as-proofs correspondence, a total logic
program is essentially a constructive proof of a “theorem” in that it shows how, given closed LF
terms of certain types, to find closed terms of other, related types. Since such theorems are about
the existence of LF terms, and LF is usually instantiated to coincide with some logic of interest,
the theorems are called meta-theorems and the programs that prove them meta-proofs. Note that,
although proofs do take the form of programs, the fact that they are logic programs (which are sets
of constants with declared types and kinds) rather than functional programs (which are simply λ-
terms) means that the propositions they prove do not precisely correspond to anything in the LF
type theory itself — certainly not to types as in the familiar Curry-Howard isomorphism.

2.1.2 The Metalogical Skeleton

The basic operation of the metalogical certification framework is as follows. The two principals
involved in the use of a certification system are the producer, who generates the code, and the
consumer, who wishes to run it on his or her computer. The consumer in general does not trust
the producer, but does trust his or her own computer, including its operating system, the run-
time environment in which the untrusted code will execute, and any part of the certification and
verification machinery over which he or she has control.

The first step is to specify the safety policy. As with other approaches to foundational certified
code, the safety policy takes the form of an operational semantics for the target machine, that is,
a description of the possible states of the machine and a transition relation between those states.
Any program whose behavior can be described by this semantics is considered safe; thus it must
differ from the “real” semantics of the hardware in that it must not contain any transitions cor-
responding to behaviors the consumer wishes to rule out. In addition to this abstract machine
model, the safety policy provides a relation between programs — represented at this foundational
level as strings of bytes — and machine states that relates any given program to all of the possible
initial states from which execution of that program might begin.

Figure 2.1 is an outline of the body of Twelf code needed for metalogical certification. It con-
tains the names and kinds of all the important “top-level” types, and indicates which principal,
the producer or the consumer, is responsible for filling in the definition of each. The three compo-
nents of the safety policy just described are covered by the first few lines of the outline. Machine

2.1. METALOGICAL FOUNDATIONAL CERTIFIED CODE 13

% The safety policy
state : type.
. . . % consumer provides definition
transition : state -> state -> type.
. . . % consumer provides definition
initial state : astring -> state -> type.
. . . % consumer provides definition

% Certificates and Validity
certificate : type.
. . . % producer provides definition
check : certificate -> astring -> type.
%mode check +CERT +AS.
. . . % producer provides definition

% The safety theorem
reaches : astring -> state -> type.
reaches z : reaches AS S <- initial state AS S.
reaches s : reaches AS S

<- reaches AS S’
<- transition S’ S.

safety : check CERT AS -> reaches AS S -> transition S S’ -> type .
%mode safety +DC +DR -DT.
. . . % producer provides definition
%worlds () (safety).
%total (safety). % consumer checks totality

Figure 2.1: The skeleton of metalogical certified code.

states are represented by objects of type state , and the relation transition defines the dynamic
semantics of the machine. Strings of bytes have type astring ; the relation initial state con-
nects programs, represented as strings of bytes, to machine states. It is the prerogative of the code
consumer, who will be running the certified binaries on his or her machine, to define the safety
policy, so it is the consumer who is responsible for providing the definitions of these LF types.

The rest of the code to fill in the outline is to be provided by the code producer. The producer’s
first obligation is to define what the certificates in certified binaries will look like. This amounts
to filling in the definition of the type certificate in the figure. This is where the flexibility of
the metalogical approach begins to show: the framework does not require any particular form
of certificate, so the code producer is free to define certificates to be anything from terse typing
annotations (as in TALx86) to oracle strings (as in PCC [53]) to proof terms in higher-order logic
(as in FPCC [3]) or the Calculus of Inductive Constructions (like Hamid et al. [28]) — provided, of
course, that he or she can fulfill the remaining obligations using certificates of the form chosen.

Since the code producer gets to define the type certificate , he or she must also define
what it means for a certified binary to be valid. The producer accomplishes this by filling in
the definition of the relation check as shown in the figure. The certified binary consisting of
program code AS : astring and certificate term CERT : cert is considered valid if the type
check CERT AS is inhabited.

14 CHAPTER 2. TALT BACKGROUND

The largest and most important contribution of the producer, of course, is the proof of the
safety theorem. The safety theorem is stated in terms of the consumer’s safety policy and the
producer’s method of certification, but modulo these definitions it is always the same. It says:

If the program AS is well certified, then any state that can be encountered while exe-
cuting AS has a successor in the transition relation.

To state this as a Twelf metatheorem, we first define the relation reaches between programs
(again, represented as byte strings) and machine states that identifies those states that may be
encountered while executing a given program. In particular, the type reaches AS S is inhabited
iff S is reachable via the transition relation from some initial state of AS . The kind, mode
and totality of the type safety together comprise the theorem: Given (any program AS , any
certificate CERT , any state S and) evidence that CERT is a valid certificate for AS and that S is
reachable from an initial state of AS , a state S′ can be found such that there is a transition from S
to S′. The code producer fills in a definition of safety that is well-moded and total, proving the
theorem.

To see why this formulation of the safety theorem makes sense, note that it essentially means
that the execution of a well-certified program will never get stuck with respect to the operational
semantics defined in the safety policy. Presumably, the design of the concrete hardware that will
run the program defines a successor for every possible state of that concrete machine, even those
that the consumer considers unsafe and wishes to avoid. The operational semantics in the safety
policy, on the other hand, is constructed on purpose to lack these states (or the transitions that
lead to them). Assuming that the safety policy’s transition relation mirrors the behavior of the
hardware closely enough,1 the import of the safety theorem is that when a well certified program is
executed on a concrete machine, the machine will never visit any state (or perform any transition)
not covered by the safety policy. In other words, well certified programs stay within the realm of
allowable behavior.

The alert reader will also notice that this formulation of safety seems to imply that a well-
certified program never terminates. This is of little importance. If the safety policy were required
to define some notion of “terminal” state, then the theorem could be modified to say that any
reachable state either has a successor or is terminal. Crary and Sarkar apparently considered
this nonuniformity irksome, so instead the safety policy endows the machine with an imaginary
“halted” state whose successor is itself. Instructions that terminate the certified program and re-
turn control to the runtime system cause transitions into this state. In fact, this decision is quite
sensible if we consider the mapping between states of the concrete machine and states of the
safety policy (which of course is not formally defined, because the states of the concrete machine
are not formally defined) to identify concrete states that are indistinguishable by safe programs.
The execution of the concrete machine can continue indefinitely, long after any given program has
terminated — but of course no program can observe anything that happens after it has finished, so
it is fitting that a “halting” execution of the abstract machine ends with an unbounded sequence
of transitions between indistinguishable states.

1(and that issues of nondeterminism and underspecification are handled properly — this gets tricky and I won’t
discuss it)

2.1. METALOGICAL FOUNDATIONAL CERTIFIED CODE 15

2.1.3 Certified Binaries and Verification

Generic and Specific Obligations

As I have just explained, the producer must make several contributions to the process of metalogi-
cal certification: he or she must define the type of certificates, define what it means for a certificate
to be valid, prove that programs that have valid certificates are safe, and provide a (valid) cer-
tificate for each program he or she asks a consumer to run. The first two of these constitute the
definition of a safety condition; the producer claims that any program satisfying a certain property
(namely, the existence of a valid certificate) is safe and promises to demonstrate that any program
he or she submits for execution will have that property (by providing such a certificate). The next
contribution, the proof that well certified programs are safe, is known as the producer’s generic
obligation because it addresses the safety, not of any particular program, but of all programs that
satisfy the safety condition. The presentation of a certificate along with a program to be run is
called the producer’s specific obligation, since it establishes the particular program in question as a
member of that generic class.

Certified Binaries and Verification

The file format for certified binaries in the Crary-Sarkar
0x554d4300 ("\0CMU")0:

4: code_end

8:

code

code_end: safety condition id (6 bytes)

code_end+6: cert_end

code_end+6:

certificate

cert_end:

Figure 2.2: TBF File Layout

system is called TBF, for Trustless Binary Format. Figure 2.2
shows the layout of a TBF file. A certified binary contains a
magic number that identifies the version of the format, the
program code, a second magic number that identifies the
safety condition the certificate is supposed to satisfy, and the
certificate. The code is IA-32 machine code in raw binary
form. The certificate consists of definitions in Twelf syntax;
it may contain any number of definitions, but the last one in
the file must define a term thecert of type certificate .

Upon receiving a TBF file for execution, the consumer
consults the magic numbers in the file to determine the safety
condition the program is supposed to satisfy. If the consumer
is familiar with the particular safety condition claimed and
believes it to be sound, only the program-specific proof obli-
gation, the certificate itself, needs to be verified. If the safety
condition is unknown to the consumer, however, the producer must first fulfill the generic proof
obligation by supplying the complete definition of the safety condition and the generic safety
proof.

Since safety proofs are large and are shared between programs, they are not included in TBF
files. When the consumer encounters an unfamilar safety policy, it contacts the producer and asks
for the Twelf code necessary to fill in the ellipses in the skeleton. Upon receiving it, the consumer
feeds the entire “fleshed-out” skeleton into Twelf and asks the program to check the totality of the
safety relation — remember that if safety is a total relation with the specified mode, then it
constitutes a proof of the soundness of the safety condition. If Twelf fails to verify that safety
is total, the consumer has no basis for believing the untrusted program is safe, and rejects it. If
Twelf succeeds in verifying the totality of safety , then the consumer can not only go on to check
the certificate of the particular program in question, but can also remember this generic result
and skip the step of safety proof verification when it encounters programs certified to this safety

16 CHAPTER 2. TALT BACKGROUND

condition in the future.
Once the soundness of the safety condition is established, the consumer moves on to check-

ing that the particular program under consideration is well certified. The basic idea is simply to
translate the sequence of bytes in the code section of the TBF file into an LF term theprog of type
astring and check that the type (check thecert theprog) is inhabited, but as of this writing
there are two different mechanisms under development for accomplishing this. The first relies on
the logic programming features of Twelf to check the certificate; the second requires the producer
to supply a checker written in a different language.

The first approach, which has been under development longer and is closer to completion,
is to assume that the safety condition check is defined in such a way that it can be interpreted
as an Elf logic program. Under this approach, the consumer simply passes the query “check
thecert theprog” to the Twelf interpreter. If the query succeeds, then the type named by the
query is inhabited and the program is well certified; if the query fails (or fails to terminate after
a reasonable period of time), then the program is rejected. The second approach is the subject
of Susmit Sarkar’s forthcoming Ph.D. thesis. Briefly, it requires the producer to submit, along
with the definition of the safety condition and the proof of its soundness, a checker for certified
programs. These checkers are to be written in a functional language with a highly specialized
type system capable of guaranteeing that any well-typed checker is correct with respect to the LF
definition of the safety condition.

Regardless of which approach is used to verify the correctness of the certificate, once this step
is complete the consumer should believe that the program obeys the safety policy and be willing
to run it. Running a program simply consists of loading the bytes from the code section of the TBF
file into an executable area of memory and jumping to the first instruction in a manner consistent
with the safety policy.

2.2 TALT

The most effective known way to fulfill a code producer’s proof obligations in a certified code
setting is to use a type system. Indeed, in early non-foundational certified code architectures
(PCC and TAL), the safety policy itself was expressed as a type system. In all foundational proof-
carrying code implementations that I am aware of, proofs of safety are constructed using a type
system: a program is shown to be well-typed, and this fact is shown to imply its adherence to the
safety policy. Metalogical certification is no exception to this pattern, as the only safety conditions
and safety proofs that have been created for use within the framework so far have been based on
type systems. The details of the implementation have evolved slightly since it was first conceived
and presented by Crary [14], but there has always been a type system at the core of the safety
argument. That type system is known as TALT, and it was the starting point for the type system
design I will discuss in detail in upcoming chapters. In this section, I describe the most important
features of TALT.

2.2.1 TALT, XTALT and EXTALT

In an ideal instantiation of the Crary-Sarkar framework, the safety argument might be built around
a “type system for machine language,” that is, a system of formal judgments that apply directly
to sequences of bytes and characterize their structure as data and their behavior as code. A certifi-
cate for a particular string of bytes would simply be a typing derivation, possibly compressed so
as to remove information that could be reconstructed by examining the byte string and certificate

2.2. TALT 17

Safety Policy

certificate

code

TBF file

XTALT

Type-Checker

p
a
rs

e
c
h
e

c
k

byte string

XTALT

program

im
p

le
m

e
n
ts

machine

state

abstract

state
elaborates to

initial state

TALT
Abstract Machine

S
im

u
la

te
s

TALT Type System

T
yp

e
 S

a
fe

ty

w
e

ll-
ty

p
e
d

(a) (b) (c) (d)

Figure 2.3: Overview of the TALT safety structure.

together. Validity of a certificate would be checked by attempting this reconstruction and, if suc-
cessful, checking that the resulting derivation proves the appropriate judgment. The safety proof
would be based on progress and type preservation lemmas for the type system with respect to the
safety policy’s operational semantics.

The notion of a “type system for machine language” is so vague that it could probably be
argued that this is how TALT works. However, such an argument would stretch the limits of what
most practitioners in the field mean by most of the terms involved. The intuitions behind the TALT

system are therefore best understood by casting it in a somewhat different light, which reveals
at least three closely related but distinct type systems and two different operational semantics.
As I have already explained, the safety policy defines an abstract machine and its operational
semantics; the “TALT abstract machine” is defined in the course of the safety proof and is the focus
of much of the type safety argument. The TALT type system itself is a type assignment system for
the TALT abstract machine; XTALT is an explicitly typed version of TALT used in certificates; and
EXTALT is the more user-friendly input language of the certifying assembler.

The relationships between these components are sketched in Figure 2.3. The TALT abstract
machine is the core of the system. This abstract machine is intended to closely resemble the one
whose operational semantics constitute the safety policy (which in turn is an abstracted view of
the IA-32) but to be abstract enough to insulate the type safety proof from machine details such
as instruction encoding and the precise layout of a program’s address space. Differences between
the TALT abstract machine and the safety policy include:

• The TALT abstract machine distinguishes between instructions and the bytes that encode
them, whereas in the safety policy the only values are bytes or sequences of bytes. In ad-

18 CHAPTER 2. TALT BACKGROUND

dition, the instruction set of the abstract machine has some instructions that do not exist in
the safety policy or in the concrete IA-32 instruction set. Each of these “fake instructions” is
encoded by a sequence of zero or more IA-32 instructions.

• The TALT abstract machine allows arbitrary combinations, and arbitrary-depth nestings, of
operand and destination addressing modes. This is for the sake of uniformity; combina-
tions that do not correspond to real IA-32 instructions will simply never come up in actual
programs.

• The TALT abstract machine treats the stack as a special object, distinct from the heap, whereas
the safety policy treats all of memory uniformly and treats the stack pointer register just like
the other general-purpose registers.

As the figure shows (column (d)), the TALT type system is sound with respect to the TALT abstract
machine, which in turn is related to the abstract machine of the safety policy by a simulation theo-
rem. These two facts together imply that if the concrete machine starts in a state that “implements”
a well-typed abstract machine state, the subsequent evaluation will not get stuck.

One important characteristic the safety policy and the TALT abstract machine have in common
is that they are basically untyped. Values, instruction sequences, and states of the TALT abstract
machine are all completely free of typing annotations.2 The type system properly called TALT is a
type assignment system, or a Curry-style type system, for the TALT abstract machine.

TALT is a fairly powerful type system, including (among other things) System F-style polymor-
phism; thus it is presumed that since typing is undecidable for Curry-style F [70] it is undecidable
for TALT as well. As a result, a certificate for the binary representation of a TALT program must
provide not only enough information to parse the machine code as a sequence of TALT instruc-
tions and values, but also enough typing information to reconstruct a typing derivation for the
implicitly-typed TALT code. In the current implementation, these requirements are met by using
an explicitly-typed program as the certificate. The language of explicitly-typed TALT programs
is called XTALT; the types of XTALT are the same as those of TALT, but the term language is very
different and so are the typing rules.

An XTALT program is a sequence of blocks, each with a label and an explicit type annotation.
(As in conventional assembly language, labels are intended to denote the memory addresses at
which their associated blocks reside.) A theory of coercions takes the place of TALT’s rich sub-
typing relation, and the syntax of instructions and values is constructed so as to make syntax-
directed type-checking of XTALT programs feasible. No operational semantics is directly defined
for XTALT; instead, a relation called elaboration is defined between XTALT programs and TALT val-
ues; if a program X elaborates to V , then V is the TALT representation of the sequence of bytes
encoding X. Thus XTALT is built for the convenience of the type-checker, while TALT is built for
the convenience of the safety proof.

The assembler that produces certified binaries must therefore output an LF representation of
the XTALT representation of the machine code it generates. The input to the assembler is in a
third language, which for the purposes of this thesis I will call EXTALT (because it is the external
language of the assembler). At present EXTALT does not differ significantly from XTALT. As I
will describe in the next chapter, however, my resource-bounded versions EXTALT-R and XTALT-R

do differ from each other in an important way, which will have an important implication for the
assembler that must translate between them.

2Crary [11] has stated that this was simply more convenient when proving the safety theorem, but I think it can be
justified on the aesthetic grounds that it avoids putting a lot more distance between the abstract and concrete opera-
tional semantics.

2.3. MINITALT 19

Figure 2.3 also shows how certificate verification in TALT works. When a TBF file is received
for execution (column (a)), its two components are extracted. The code is a sequence of bytes
(an LF term of type astring), and the certificate is an XTALT program (also represented as an
LF term). The safety condition consists of the relationships depicted in column (b): the XTALT

program must be well-typed, and the byte string must in fact be an encoding of that program.
Verification of a certified binary amounts to checking that these two relationships hold. That is
all that need be checked for any particular program: the generic safety proof for TALT argues that
if the safety condition is met, then the relationships indicated by dashed lines in column (c) also
hold. The XTALT program determines an initial state of the abstract machine, and the byte string
determines an initial state of the safety policy’s machine. The safety condition implies that the
abstract state is well typed and the concrete state implements the abstract state; thus, by the type
safety and simulation theorems, execution of the program will not get stuck.

2.3 MiniTALT

Unfortunately, none of the variations of TALT just described will do for the purposes of presen-
tation in this thesis. The typing annotations of EXTALT and XTALT are bulky and cumbersome,
although these languages do have the advantage of being geared toward the presentation and
static analysis of programs rather than proofs of safety. TALT itself, being a type assignment sys-
tem, is concise, but really applies to machine states and values rather than a convenient notion of
“program”. Furthermore, and most annoyingly for human readability, the TALT abstract machine
deals very explicitly with the operands of jump instructions, which (when not indirect) are almost
always pc-relative; it also is explicit about the sizes of instruction encodings, which on the IA-32
vary from one instruction to another. Thus finding the target of a direct jump instruction requires
knowing the sizes of all the instructions in between the jump and the target — not something that
readers of a thesis should be asked to do in order to understand simple examples.

Therefore, for this thesis, I adopt a compro- Implicitly Typed Explicitly Typed

Blocks MiniTALT XTALT

Flat TALT none

Table 2.1: Variants of TALT

mise. For the purposes of all the code examples,
translations and proofs herein I will use a block-
structured, implicitly typed language called Mini-
TALT. Like TALT, MiniTALT is implicitly typed,
so examples are unburdened by typing annota-
tions (except as comments where they are helpful). Like XTALT, MiniTALT treats a program as
an entity unto itself rather than as a value in the memory of a machine. A program is a sequence
of blocks, each with a label; a label can occur as an operand, where it is intended to denote a pc-
relative reference to the location where its associated block resides. Table 2.1 summarizes these
relationships.

In addition to its more readable syntax, the MiniTALT type system I will use in this thesis is a
considerably simpler theory than the TALT actually implemented as an instance of the metalogical
certification framework. Specifically, I have removed many types that do not appear in any of
the code examples in the thesis, and many inference rules that do not play a role in any of the
typings we will encounter. For the most part, these omissions merely serve to exclude distracting
information much of which has already been covered by Crary and Sarkar [14, 15].

20 CHAPTER 2. TALT BACKGROUND

W = 4 (word size in bytes)
B ∈ Wordval = {0, . . . , 28W − 1}

r ∈ Reg = {eax , ebx , ecx , edx , esi , edi , ebp}
r̄ ∈ Genreg = Reg ∪ {esp }

Figure 2.4: Machine-Specific Notation for IA-32

Operands o ::= B | ` | r̄ | i‘[o + j] | i‘[o1 + j + j′ · o2]
Destinations d ::= r̄ | i‘[o + j] | i‘[o1 + j + j′ · o2]
Conditions κ ::= e | ne | b | be | a | ae | o | no
Instruction Sequences I ::= ε

| add d, o1, o2 I
| addsptr d, o, n I
| call o `
| cmp o1, o2 I
| cmpjcc o1, o2, κ, o3 I
| halt
| jcc κ, o I
| jmp o I
| malloc d, n I
| mallocarr d, n, o I
| mov d, o I
| pop n, d I
| push o I
| ret I
| salloc n I
| sfree n I
| sub d, o1, o2 I

Programs P ::= `1 = I1, . . . , `n = In

Figure 2.5: MiniTALT Program Syntax

2.3. MINITALT 21

2.3.1 Basic Syntax

The syntax of MiniTALT programs is given in Figures 2.4 and 2.5. Figure 2.4 defines some basic no-
tation that is specific to the IA-32 architecture: the word size W = 4 and the names of the registers.
Figure 2.5 has the syntax for operands, destinations, instruction sequences and programs.

Most of the MiniTALT syntax should be recognizable to those familiar with Intel-style assem-
bler syntax [38]. Unlike informal accounts of conventional assembler syntax, MiniTALT distin-
guishes between operands, which produce values, and destinations, where values can be stored.
Also, unlike the concrete IA-32 instruction set, MiniTALT does not restrict the combinations of
operands and destinations that can appear together in an instruction.

An operand is either a literal word, a label, a register, or a memory operand. A destination
may be any of these except for a literal or label.3 Memory operands are annotated with the size
(in bytes) of the value being fetched from memory; thus 1‘[eax + 2] means a single byte, located
at offset 2 from the pointer in eax . I will elide the size prefix for word-sized operands, and I will
elide the offset (the j in [o + j]) when it is zero. Thus the 4-byte word pointed to by ebp can be
written simply [ebp]. For array element operands i‘[o1 + j + j′ · o2], the scaling factor j′ may be
elided if it is 1. Similar conventions apply to destinations.

Many of the instructions of MiniTALT (e.g. add , jmp) are familiar IA-32 instructions. The
call instruction is slightly unusual in that each call specifies the label that should be used as
the return address when it is executed. (This is for the convenience of the abstract operational
semantics, so that every code pointer ever manipulated by the machine corresponds to a label that
occurs in the program text.) The instruction call o ` will therefore usually mean “Call the func-
tion o, and when it returns, continue with the code at `.” This is more general than the call of
concrete IA-32 implementations, in which the return address is always the address of the instruc-
tion immediately following the call . For readability, code examples will be written in a style that
appeals to this intuition: e.g., the two-block program fragment `1 = call o `2, `2 = jmp `1 will be
written with a single block, as `1 = call o jmp `1.

Most of the other instructions of MiniTALT are implemented straightforwardly with IA-32
instructions or short sequences of instructions. The addsptr instruction, for example, adds a
constant value to a pointer into the stack; this is implemented by an add instruction on an actual
hardware (that is, the same bytes that encode addsptr also encode add), but since the abstract
machine treats pointers differently from integers, and the stack as distinct from the heap, a differ-
ent syntax and typing rule are needed at the type level. Similarly, sfree is “really” just an add
instruction.

The remaining instructions of MiniTALT are implemented by sequences of two or more IA-32
instructions. For instance, a cmpjcc is implemented by a cmp followed by a jcc ; the combined
instruction at the TALT level has a special typing rule allowing typings that could not easily be
achieved with two separate instructions.4 Less obviously, salloc , which allocates space on the
stack, is implemented by a sequence of two instructions: a sub to decrement the stack pointer,
and a mov into the newly allocated space that triggers a page fault if the stack has overflowed. Fi-
nally, the malloc and mallocarr instructions are implemented as call instructions that invoke
functions in the runtime library to allocate space in the heap.

3In conventional IA-32 assembly language a label may be used as a destination; this is disallowed in TALT to keep
code position-independent.

4“Easily” is a weasel word here. Presumably one could come up with special rules for cmp and jcc that relied on
some ad hoc device to make sure they were only ever used when the instructions appeared together. I do not even mean
to suggest that that would be a bad idea, but it is not how TALT works.

22 CHAPTER 2. TALT BACKGROUND

Kinds K ::= T | Ti | TD | N | k1 → k2

Static Terms c, τ, x ::= α
| ns i | B0 | Bi | τ1 × τ2 | τ ↑ x | box (τ) | mbox(τ) | sptr (τ)
| Γ → 0 | set =(x) | set <(x) | set >(x) | ∀α:K.τ | ∃α:K.τ
| τ1 ∧ τ2 | τ1 ∨ τ2 | void | µα.τ | n | λα:K.c | c1 c2

Static Contexts ∆ ::= · | ∆, α:K | ∆, ϕ true

Register File Types Γ ::= {eax :τax, . . . , ebp :τbp, esp :τsp}
Memory Types Ψ ::= {`1 : τ1, . . . , `n : τn}

Figure 2.6: MiniTALT Type System Syntax

2.3.2 Type System

The syntax of the MiniTALT type system is given in Figure 2.6, and the judgment forms are sum-
marized in Table 2.2. At the top level of the system are four kinds, which classify the terms at the
second level, which we call static terms. The class of static terms is comprised of the types (of kinds
Ti, TD and T) and the number terms (of kind N). By convention, I will use the metavariables τ and
x in place of the general metavariable c to indicate that the static term referred to is a type or a
number term, respectively. Furthermore, I will use the letter a instead of α for variables intended
to be of kind N. The only terms of kind N other than variables are the numerals, written n, where
n is a nonnegative integer. (The set of static terms will be expanded significantly when I extend
MiniTALT to MiniTALT-R in Chapter 3.) I have chosen to call the syntactic category containing
the types “static terms” rather than the more usual “type constructors” (or simply “constructors”)
because although number terms may appear in types, they cannot really be said to construct any-
thing. The name “static terms” also highlights my intention that these terms are part of the (static)
type assignment system only; they do not appear in raw MiniTALT programs.

As usual, the role of types is to classify values. The need for three different kinds for types
comes from an unusual feature of TALT, namely that values are not all the same size — in fact,
it is not even the case that values of the same type have the same size (for example, consider the
type B0 ∨ B4). For each natural number n ≥ 0, Tn is the kind of types whose values are exactly n
bytes in size. TD is the kind of types τ such that all values of type τ are the same size. That is, if
τ has kind TD and v1 and v2 have type τ , then v1 and v2 must be the same size; types of kind TD

“determine” the size of the values they contain. Thus any type of kind Ti also has kind TD. T is
the kind of any type whatsoever, even those types that contain values of more than one size. Most
of the values manipulated by MiniTALT-R code will have types of kind TW , where W is the word
size of the architecture (for IA-32, W = 4). The notable exception is the stack, which is permitted
to vary greatly in size and hence usually has a type of kind TD.

For i > 0, the “nonsense” type ns i may be given to any value whatsoever of size i; any type
of kind Ti is therefore a subtype of ns i. For i ≥ 0, Bi is the type of integer values i bytes in
width. Values of the product type τ1 × τ2 consist of a value of type τ1 and one of type τ2 appended
together; hence if τ1 : Ti and τ2 : Tj then the product has kind T(i + j). There are subtyping rules
that make the product constructor associative and B0 a unit. The array type τ ↑ x, where x is a
number term, describes values that consist of x values of type τ appended together. Thus if τ has
kind Ti, then τ ↑ n has kind T(ni).

Pointers to code (and in particular the labels associated with MiniTALT instruction blocks)
have arrow types of the form Γ → 0, where Γ is a register file type. It is safe to jump to a pointer of

2.3. MINITALT 23

Judgment Meaning

∆ ` c : k c has kind k
∆ ` Γ Γ is well-formed
∆ ` τ1 ≤ τ2 τ1 is a subtype of τ2

∆ ` Γ1 ≤ Γ2 Γ1 is a subtype of Γ2

∆;Ψ;Γ ` o : τ Operand o has type τ
∆;Ψ;Γ ` d : τ → Γ′ Propagating a value of type τ to d yields Γ′

∆;Ψ;Γ ` I I is well-typed

∆;Ψ ` I : τ block I constitutes a block of type τ
` P P is well-typed

Table 2.2: MiniTALT Typing Judgment Forms

type Γ → 0 if the current register state has type Γ. Pointers to data in the heap have type box (τ);
pointers to mutable data in the heap have type mbox(τ). The type sptr (τ) describes a pointer into
the stack. Universal quantification ∀α:K.τ and existential quantification ∃α:K.τ have their usual
meanings, as do recursive (µα.τ), intersection (∧) and union types (∨).

The type set =(x), where x is a word term, is a singleton type whose sole element is the word-
sized binary representation of the number denoted by x. (If the number is not representable, then
set =(x) is an empty type.) The subrange types set <(x) and set >(x) have as their elements the
word-sized unsigned representations of numbers less than x and greater than x respectively. In
TALT the singleton and subrange types are used mainly for array bounds checking and the imple-
mentation of disjoint union types; in TALT-R I will have another important use for the singleton
type.

2.3.3 Instruction Typing

Since a MiniTALT program consists of a set of labeled instruction sequences, the central judgment
in the type system is the one pertaining to instruction sequences. The judgment

∆;Ψ;Γ ` I

means that in the context consisting of the kinding assumptions ∆, the memory type Ψ and the
register file type Γ, the instruction sequence I is well-typed. In effect, it states that the sequence I
is safe to execute when the heap is of the form described by Ψ and the registers contain values of
the types described by Γ.

Some of the rules defining this judgment are shown in Figure 2.7; these rules make heavy use
of auxiliary typing judgments for operands and destinations, whose meanings are summarized
in Table 2.2. One of the simplest instruction typing rules in the system is the one for the mov
instruction, the first rule in the figure. This rule states that the instruction sequence consisting of
movd, o followed by I is well typed if:

• the operand o is well-typed (with type τ), and

• the destination d is well-formed, and Γ′ describes the state of the registers after propagating
a value of type τ to d, and

• the continuation I is well-typed under Γ′.

24 CHAPTER 2. TALT BACKGROUND

∆; Ψ; Γ ` o : τ
∆; Ψ; Γ ` d : τ → Γ′ ∆; Ψ; Γ′ ` I

∆; Ψ; Γ ` mov d, o

∆; Ψ; Γ ` o1 : B4 ∆; Ψ; Γ ` o2 : B4
∆; Ψ; Γ ` d : B4 → Γ′ ∆; Ψ; Γ′ ` I

∆; Ψ; Γ ` add d, o1, o2 I

∆; Ψ; Γ ` o : Γ → 0

∆; Ψ; Γ ` jmp o I

(Γ(esp) = τs)
∆; Ψ; Γ ` o : τ ∆; Ψ; Γ{esp :τ × τs} ` I

∆; Ψ; Γ ` push o I

(Γ(esp) = τs) ∆; Ψ; Γ ` ` : Γr → 0
∆; Ψ; Γ ` o : Γ{esp : (Γr → 0) × τs} → 0

∆; Ψ; Γ ` call o `

Figure 2.7: Selected Instruction Typing Rules.

Values v ::= B | ` | sptr(n)
Heap values V ::= I | 〈v1, . . . , vn〉
Memories H ::= {`1 7→ V1, . . . , `n 7→ Vn}
Flags b ::= 0 | 1
Flag sets φ ::= {cf 7→ bc, zf 7→ bz, sf 7→ bs, of 7→ bo}
Register Files R ::= {eax 7→ vax, . . . , ebp 7→ vbp,flags 7→ φ}
Machine Configurations M ::= (H, Vs, R, I)

Figure 2.8: MiniTALT Abstract Machine Configurations

The add rule is similar to the mov rule, except that the two operands must both have type B4 —
that is, produce 32-bit integer values — and the value propagated to the destination has type B4
as well.

The typing of control transfer instructions is illustrated by the typing rule for jmp . It states
that the instruction jmp o is well-typed if the operand o has type Γ → 0, where Γ is the current
register file type. In other words, (the value of) o must be a pointer to code that is safe to execute
under precisely those conditions that happen to hold at the time.

The rule for push (in the second row of the figure) illustrates the typing of stack manipulation
instructions. If the stack has type τs, and the operand o has type τ , then the effect of push o is to
append the value of o to the existing stack, producing a stack of type τ × τs; the continuation I
must be well-typed assuming the stack has this new type.

The IA-32 function call instruction takes a single operand, which is the address of a function.
The call instruction pushes the specified return address label onto the stack and jumps to the
start of the function. Thus call is essentially a combination of push and jmp . The typing rule
captures this: in order for the one-instruction sequence call o ` to be well-typed, the return label
` must have some code type Γr → 0, and the code pointed to by the value of o must be safe to
execute in the state that results from pushing ` onto the stack.

The typing rules selected for discussion here cover most of the main ideas at work in MiniTALT
type system. The complete set of typing rules, including rules for kinding, subtyping and auxiliary
judgments, can be found in Appendix A.

2.4. CHAPTER SUMMARY 25

2.3.4 Operational Semantics

The dynamic semantics of MiniTALT is defined in terms of the abstract machine whose configu-
rations have the form shown in Figure 2.8. Because the purpose of MiniTALT is to support clear
explanation of key concepts within the pages of this thesis, rather than to play a direct role in
the certification of IA-32 programs, the semantics I present here is in the style of TAL [47] and
STAL [46], rather than the more realistic but more complicated “official” semantics of TALT. A
configuration of the MiniTALT machine consists of a memory (H), a stack (Vs), a register file (R),
and an instruction sequence (I). The memory maps locations, which are abstract pointer values
not confusable with integers, to heap values, each of which is either an instruction sequence or
a sequence of word-sized values. The stack is also a heap value. The register file associates a
word-sized value with each of the machine’s general-purpose register names and a bit with each
of the four status flags commonly used for conditional jumps; the stack pointer register implicitly
points to the beginning of the stack value Vs. A pointer into the stack has the form sptr(n); this is
a word-sized value and represents the location n bytes away from the base of the stack.

The (single-step) transition relation 7→ on machine configurations is defined in Table 2.3. The
conditions in the second column of the table are stated in terms of auxiliary judgments for resolv-
ing operands and propagating values to destinations; the rules for these judgments can be found
in Appendix A.2. The addition and subtraction operations ⊕ and 	 correspond to the 32-bit bi-
nary arithmetic performed by an IA-32 processor, and specify both the resulting word and the
new values of the status flags; the definitions of these operations are omitted, as are the formal
definitions of the condition satisfaction relations φ |= κ. Informally, φ |= κ if the status flag values
φ indicate that the condition κ holds of the most recent arithmetic operation. For details of how
these things are determined, see either the TALT paper [14] or the IA-32 manual [38].

2.4 Chapter Summary

This chapter consitutes the background on Crary-Sarkar metalogical code certification necessary
to understand the balance of the thesis, including specifics of the type system TALT. TALT is a type
system for an abstract machine closely related to a safe subset of the IA-32 architecture, and is the
primary exemplar of code certification using the Twelf metalogic. I have described the mecha-
nisms of certification and verification of TALT programs, including the roles of the related systems
XTALT and EXTALT, and given a more detailed presentation of the variant called MiniTALT that
stands in for TALT in the bulk of the thesis.

26 CHAPTER 2. TALT BACKGROUND

If I = . . . and. . . (H,Vs, R, I) 7→ (H ′, V ′
s , R′, I ′) where. . .

add d, o1, o2 I ′ H,Vs, R ` o1 B1 R′ = R1{flags 7→ φ}
H,Vs, R ` o2 B2

B1 ⊕ B2 = (B3, φ)
H,Vs, R ` d(B3) H ′, V ′

s , R1

movd, o I ′ H,Vs, R ` o v
H, Vs, R ` d(v) H ′, V ′

s , R′

sub d, o1, o2 I ′ H,Vs, R ` o1 B1 R′ = R1{flags 7→ φ}
H,Vs, R ` o2 B2

B1 	 B2 = (B3, φ)
H,Vs, R ` d(B3) H ′, V ′

s , R1

cmp o1, o2 I ′ H,Vs, R ` o1 B1 R′ = R{flags 7→ φ}
H,Vs, R ` o2 B2

B1 	 B2 = (B3, φ)

jmp o I0 H,Vs, R ` o ` H ′ = H , V ′
s = Vs, R′ = R

H(`) = I ′

call o `r H,Vs, R ` o ` H ′ = H , R′ = R, V ′
s = `r@Vs

H(`) = I ′

jcc κ, o I0 R(flags) |= κ H ′ = H , V ′
s = Vs, R′ = R

H,Vs, R ` o `
H(`) = I ′

jcc κ, o I0 R(flags) 6|= κ H ′ = H , V ′
s = Vs, R′ = R, I ′ = I0

cmpjcc o1, o2, κ, o3 I0 (H,Vs, R, cmp o1, o2 jcc κ, o3 I0)
7→2 (H ′, V ′

s , R′, I ′)

pop d I ′ Vs = v1@Vs0

H,Vs0, R ` d(v1) H ′, V ′
s , R′

push o I ′ H,Vs, R ` o v H ′ = H , R′ = R, V ′
s = v@Vs

ret I0 Vs = `@V ′
s H ′ = H , R′ = R

H(`) = I ′

salloc n I ′ n = mW H ′ = H , V ′
s = 〈v1, . . . , vm〉@Vs

R′ = R, v1, . . . , vm are arbitrary values

sfree n I ′ Vs = V1@V ′
s H ′ = H , R′ = R

|V1| = n

malloc d, n I ′ n = mW
` /∈ dom(H)
H1 = H{` 7→ 〈v1, . . . , vm〉}
H1, Vs, R ` d(`) H ′, V ′

s , R′

mallocarr d, n, o I ′ ` /∈ dom(H)
H,Vs, R ` o v
H1 = H{` 7→ 〈v, . . . , v

︸ ︷︷ ︸

n

〉}

H1, Vs, R ` d(`) H ′, V ′
s , R′

Table 2.3: MiniTALT Abstract Machine Evaluation

Chapter 3

TALT-R: A Typed Assembly Language
for Responsiveness

The central claim of this thesis is that static enforcement of timing policies using type systems is
possible. In this chapter I begin to offer support for that claim by describing a TALT-like type
system that allows a range of timing policies to be certified within the metalogical framework
described in Chapter 2. Karl Crary has suggested [11] that my work be considered the next version
of TALT and essentially replace it; however, until that happens it will be useful to distinguish
Crary’s TALT from my own. Therefore, for the time being I call my assembly language TALT-R (for
“Responsiveness”).

Like TALT, TALT-R is actually a number of different, but closely related, languages that play
different roles in the certified code process. The three most prominent are:

• TALT-R itself, which is a Curry-style type system in which type-checking is presumed un-
decidable. TALT-R is analogous to Crary’s TALT, the language for which Crary and Sarkar
directly proved a safety metatheorem. I have not undertaken a formal safety proof for TALT-
R, but I am confident in the conjecture that such a proof would be a mostly straightforward
extension of the proof for TALT.

• XTALT-R (analogous to XTALT), which is an explicitly-typed version of TALT-R for which
type-checking is tractable. The certificate for a TALT-R program is an XTALT-R program.

• EXTALT-R (analogous to EXTALT) which is the external language of the TALT-R assembler
(and therefore also the direct target of high-level language compilers using TALT-R for certi-
fication).

However, as I explained for their TALT analogues in Chapter 2, none of these three is a particularly
good language to use when formally describing a compiler as I must do in this thesis. Therefore,
this chapter introduces the core language MiniTALT-R, which extends the MiniTALT of Chapter 2
in just the same way that TALT-R extends TALT.

To make the discussion of concrete, I start by describing a specific timing policy that will serve
as the main motivating example for the design of TALT-R (this chapter and Chapter 4) and my
compiler implementation (Chapters 5, 6 and 7). In Chapter 8 I will finally leave this particular
example behind and explore the range of policies that can be certified using TALT-R.

27

28 CHAPTER 3. TALT-R: A TYPED ASSEMBLY LANGUAGE FOR RESPONSIVENESS

3.1 A Responsiveness Policy

As discussed in Section 1.2, periodic yielding is an important timing requirement that must be en-
forced by operating systems and other kinds of supervisors in multithreaded applications. A
process that fails to return control to the scheduler promptly can disrupt the behavior of other
processes or bring the entire system to a halt. It seems, therefore, that any proposal for static en-
forcement of timing policies as an alternative to dynamic enforcement by pre-emptive scheduling
must address the issue of cooperation among user processes.

Because of the effects non-conformant programs can have on other processes, I choose to call
this “cooperativeness” requirement responsiveness. I state it semi-formally as follows:

I assume there is some system-specific set of operations, the yielding operations, that certified
programs are expected to perform with at least a certain frequency. In particular, I assume that,
for some large integer Y chosen in advance, a certified program must never execute more than
Y non-yielding instructions in a row.

The specific set of yielding operations will vary between systems. In the archetypical example of
an operating system, any system call that gives the kernel an opportunity to deschedule the user
process will count as a yield. In other scenarios, such as user-level thread schedulers, application
plugin frameworks, or mobile code host environments, the interface presented to untrusted code
will be application-defined and so will the designation of some of the available procedures as
“yielding.”

For the purposes of the exposition in this thesis, I will assume there is exactly one yielding
operation, which I simply call “yield”. This procedure is called from a TALT-R program by a new
yield instruction, implemented as a function call. The type system of TALT-R will therefore be
designed to enforce the simple policy that no more than Y instructions are ever executed between
two successive yield ’s.

3.2 MiniTALT-R

The remainder of this chapter describes the core language MiniTALT-R, which extends the Mini-
TALT of Chapter 2. Because the two languages, abstract machines and type systems are so closely
related, my presentation in this chapter will cover only the differences between them, i.e. the
extensions and refinements that distinguish MiniTALT-R from MiniTALT. A complete formal def-
inition of MiniTALT-R is given in Appendix B.

Since the design of this new language is motivated by the desire to certify programs with
respect to a particular safety policy, I begin with the components of the design that implement
that policy: the extension of the instruction set to include a yielding operation, and the refinement
of the operational semantics that makes it unsafe to run too long without yielding. After laying
this groundwork I will explain the extensions and refinements to the type assignment system that
are needed to guarantee programs are safe.

3.2.1 New Instructions

The MiniTALT-R programming language extends that of MiniTALT with just two new instruc-
tions. Formally, the grammar for instruction sequences gets two new productions:

Instruction Sequences I ::= · · · | subjae rd, o1, o2, o3 I | yield I

3.3. STATIC SEMANTICS 29

The yield instruction is the key addition: it is this instruction that must be executed with at least
a certain frequency under the new safety policy. The other new instruction is subjae (“subtract
and jump if above or equal”), a compound instruction comprised of a comparison and a condi-
tional jump. The instruction sequence subjae r d, o1, o2, o3 I has the same operational behavior
as (sub r d, o1, o2; jcc ae, o3; I): it subtracts o2 from o1, stores the result in r d, and jumps to o3 if
o1 is greater than or equal to o2 (interpreting these values as unsigned integers). A special typ-
ing rule reflects the result of the conditional jump into the type system. In this sense, subjae is
related to the cmpjcc instruction inherited from TALT. The addition of subjae to the language
may seem arbitrary at this point, but its usefulness in producing safe-but-efficient programs will
become clear later on.

3.2.2 The MiniTALT-R Abstract Machine

As discussed earlier (Section 2.1), the operational semantics with respect to which the type safety
theorem is proved comprises the safety policy in a foundational certification system. Thus, to
certify that programs yield at least once every Y instructions, I must provide an operational se-
mantics in which any valid execution necessarily obeys this policy and a type system that is sound
with respect to that semantics.

The dynamic semantics of MiniTALT-R are defined in terms of the MiniTALT-R abstract ma-
chine, which is a refinement of the MiniTALT abstract machine. The key change is the addition of
a virtual clock register to the register file:

Register files R ::= {. . . , ck = n} (n ≥ 0)

The value of the virtual clock is a nonnegative integer. Any non-yielding instruction executed by
the MiniTALT-R abstract machine decrements the virtual clock, while the yielding instruction sets
the virtual clock to Y .

These properties of the virtual clock capture the essence of the responsiveness policy. Since
the virtual clock can never be negative, any machine state in which the next instruction is non-
yielding but the virtual clock is zero is stuck (and thus forbidden). Therefore, any safe execution
starting from a state where ck = n must perform at least one yield in its first n + 1 steps. Since
the yield instruction sets the clock to Y , it follows that successive yields must occur no more
than Y instructions apart.

This method of instruction counting is not new: Necula and Lee proposed the use of a virtual
clock for proof-carrying code [51], and Crary and Weirich used one in their languages LXres and
TALres [18]. Unlike these others, however, I am not attempting to bound total running time; I am
only interested in bounding the time until the next yield.

3.3 Static Semantics

The type system of MiniTALT-R, like its instruction set and abstract machine, is arrived at by
means of a few changes to its MiniTALT counterpart. The modifications to the type system are
shown in Figure 3.1.

The first and most important syntactic change is the inclusion of a clock term in every register
file type. The clock term assignment ck : t, where t is a static term of type N, asserts that the value
of the virtual clock is at least the number denoted by t. The kind N is extended to include formal
sums of the form t1 + t2; the members of this expanded kind N will be called constraint terms.

30 CHAPTER 3. TALT-R: A TYPED ASSEMBLY LANGUAGE FOR RESPONSIVENESS

Static Terms c, t, τ, x ::= · · ·
| ϕ ⇒ τ | S(t)
| n (replaces B)
| t1 + t2

Constraint Formulas ϕ ::= t1 ≤ t2 | t1 = t2
Static Contexts ∆ ::= · | ∆, α:K | ∆, ϕ true

Register File Types Γ ::= {eax :τax, . . . , ebp :τbp, esp :τ, ck :t}

Figure 3.1: MiniTALT-R Type System Syntax

Another important addition is the class of constraint formulas, which are assertions of equality
or non-strict inequality between constraint terms.1 The constraint formulas and their role in typing
will be discussed below (Section 3.3.1) and the proof theory of the logic they comprise will be
explored in depth in Chapter 4.

MiniTALT-R adds only one form of type to MiniTALT: the guarded type ϕ ⇒ τ describes values
which may be given type τ if the formula ϕ is satisfied. As a syntactic convenience, I also introduce
the notation S(t) as a synonym for set =(t) — by convention, I write set =(t) when using this type
in the implementation of disjoint union types or array bounds checks (i.e., the purposes it serves
in plain TALT), and S(t) when it occurs in the typing of time-keeping idioms.

3.3.1 The Constraint Subsystem

The purpose of the constraint terms and formulas is to allow the type system to reason about
the time remaining before the next yield instruction must be performed. This constraint logic is
largely separable from the rest of the type system; in fact, there is a certain degree of flexibility in its
design. The version I will describe in this proposal is engineered mostly for clarity of presentation.

As mentioned above, the constraint terms include the natural numbers (written n, where n ≥
0) and are closed under addition; the language of formulas contains equality (t1 = t2) and ordering
(t1 ≤ t2) on constraint terms. It would be a simple matter to add propositional connectives (∧, ∨, ⊃,
⊥) to the constraint logic; however, there is surprisingly little need for them to enforce the simple
responsiveness policy of TALT-R. I therefore leave them out of this presentation for simplicity.

The type system of MiniTALT-R de-Judgment Meaning

∆ ` ϕ prop ϕ is a well-formed constraint formula.
∆ ` ϕ true The constraint ϕ is true.

Table 3.1: New Typing Judgments of MiniTALT-R

fines two judgment forms not present
in MiniTALT. Both of these have to do
with constraint formulas; their mean-
ings are summarized in Table 3.1. The
judgment ∆ ` ϕ prop means that in

context ∆, the formula ϕ is well-formed. The rules for this judgment (along with two relevant
kinding rules) are given in Figure 3.2. Note that a formula need not be “true” in order to be
well-formed.

The notion of “truth” for constraint formulas is captured by the other new judgment form:
the judgment ∆ ` ϕ true means that the truth of the formula ϕ follows from the assumptions
in ∆. Note that according to Figure 3.1, ∆ may contain both kinding assumptions of the form
α:K and hypotheses of the form ϕ true. The inference rules defining the truth judgment are given
in Chapter 4 along with extensive discussion of the rationale for their design and of their proof-

1In my thesis proposal [69], the constraint formulas were themselves static terms of a particular kind. Although
aesthetically tempting, this formulation proved not to scale soundly to the full implemented TALT.

3.3. STATIC SEMANTICS 31

(n ≥ 0)

∆ ` n : N

∆ ` t1 : N ∆ ` t2 : N

∆ ` t1 + t2 : N

∆ ` t1 : N ∆ ` t2 : N

∆ ` t1 ≤ t2 prop

∆ ` t1 : N ∆ ` t2 : N

∆ ` t1 = t2 : prop

Figure 3.2: Formation Rules for Constraints

theoretic consequences. They capture a useful, if naı̈ve, theory of addition of natural numbers that
allows all of the idioms discussed in the remainder of this thesis to be certified. (Impatient readers
can find the rules in Figure 4.1.)

3.3.2 The Virtual Clock

Accounting for the virtual clock in the type system is a fairly straightforward matter. TALT-R’s
treatment of the clock is more or less analogous to that of TALres. Register file types, in addition
to giving types for the machine’s general-purpose registers and the stack, give a constraint term
that conservatively approximates the value of the virtual clock. That is to say, if ∆;Ψ;Γ ` I ,
then the instruction sequence I may safely be executed if the value of the virtual clock is at least
(the number denoted by) Γ(ck). Typing rules for mundane instructions involving no control flow
reflect this with some simple bookkeeping. For example, the typing rule for the add instruction is:

∆;Ψ;Γ ` o1 : B4 ∆;Ψ;Γ ` o2 : B4
∆;Ψ;Γ ` d : B4 → Γ′ ∆;Ψ;Γ′{ck :t} ` I

∆;Ψ;Γ ` add d, o1, o2; I
(Γ(ck) = 1 + t)

Note the two differences from the analogous rule in TALT: First, the side condition requires that
the clock term Γ(ck) have the form 1 + t for some term t, since it is a type error to perform an add
when the clock is zero. Second, the final premise requires that the continuation I be well-typed
assuming only t on the virtual clock, since the add will have used one time unit.

Correspondingly, a code pointer of type Γ′ → 0 is safe to jump to only if the virtual clock is at
least Γ′(ck) after the jump; that is, the clock must read at least one more than Γ′(ck) in order for
the jump instruction itself to be safe:

∆;Ψ;Γ ` o : (Γ{ck :t}) → 0

∆;Ψ; Γ ` jmp o; I
(Γ(ck) = 1 + t)

The yield instruction may be performed at any time, and resets the virtual clock to Y :

∆;Ψ;Γ{ck :Y } ` I

∆;Ψ;Γ ` yield ; I

The three rules just presented preserve or improve the accuracy of the constraint term Γ(ck)
with respect to the actual value of ck . In general, though, Γ(ck) is an inexact approximation of
the virtual clock. The imprecision is due to TALT-R’s rule for register file subtyping, which allows
the constraint term assigned to ck to vary:

∆ ` t′ ≤ t true ∆ ` τ ≤ τ ′ ∆ ` τi ≤ τ ′
i for 1 ≤ i ≤ N

∆ ` {r1 :τ1, . . . , rN :τN , sp :τ, ck :t} ≤ {r1 :τ ′
1, . . . , rN :τ ′

N , sp :τ ′, ck :t′}

32 CHAPTER 3. TALT-R: A TYPED ASSEMBLY LANGUAGE FOR RESPONSIVENESS

According to this rule, a register file type where the virtual clock reads t can be a subtype of
one where it reads t′ if the formula t′ ≤ t can be proved in the constraint logic. Intuitively, the
register file type on the left specifies that the value of the virtual clock is at least t; if t′ ≤ t, then
anything that is at least t will also be at least t′. The register file type specifying ck :t is a stronger
requirement on the state of the machine, consistent with the usual meaning of subtyping.

Because the register file subtyping rule involves reasoning about the virtual clock, the sub-
typing rule for arrow types and the subsumption rule for instruction sequences take on additional
meaning in TALT-R as well. To be specific, the subsumption rule (inherited unchanged from TALT):

∆;Ψ;Γ′ ` I ∆ ` Γ ≤ Γ′

∆;Ψ;Γ ` I

now allows an instruction sequence to “forget” about some of the remaining ticks on the virtual
clock. The subtyping rule for code pointer types Γ → 0 is contravariant in Γ as always:

∆ ` Γ′ ≤ Γ

∆ ` Γ → 0 ≤ Γ′ → 0

Coupled with the register file subtyping rule, this means that a pointer to an instruction sequence
expecting t on the clock may be used in place of one expecting t′ if t ≤ t′. Intuitively speaking, this
is because any subsequent jump to that pointer will have to provide a clock of at least t′, which
will be at least enough since the instruction sequence requires only t.

I pause here to note that if the premise ∆ ` t′ ≤ t true in the register file subtyping rule were
replaced by ∆ ` t ≤ t′ true, then the sense of the approximation of R(ck) by Γ(ck) would be
reversed. That is, a register file type Γ would describe machine states in which the value of the
virtual clock was at most Γ(ck). If the premise were replaced by ∆ ` t′ = t true, then the static term
in the register file type would always correspond exactly to the value of the clock. I will discuss
some applications of these variants of the system in Chapter 8.

3.3.3 Guarded and Singleton Types

There are two forms of type in TALT-R that need to be discussed here: the singleton types (S(t)),
which are really the same as the singletons written set =(t) in TALT but have been endowed with
some new capabilities, and the guarded types (ϕ ⇒ τ), which are new. The intuitive meanings of
these types are simple, but their usefulness may not be obvious until I discuss yield-placement
strategies later on in the thesis. Basically, I will use them to construct more precise types for
functions than would otherwise be possible, so that the constraint reasoning built into the type
system can recognize more efficient code as safe. They are not strictly necessary in the sense
that it is possible to write a compiler whose output is well-typed without them, but they deliver
significant performance benefits for a reasonably small metatheoretic investment.

A guarded type ϕ ⇒ τ describes values that may be used at type τ only if the formula ϕ is
true. This is captured by a subtyping rule:

∆ ` τ : T ∆ ` ϕ true

∆ ` ϕ ⇒ τ ≤ τ

Using this rule, an operand o of type ϕ ⇒ τ may be promoted to type τ if ϕ is provable in the
constraint logic. If the truth of ϕ cannot be derived, then no interesting use can be made of o.

3.3. STATIC SEMANTICS 33

∆ ` t : N
∆ ` S(t) : TW

(0 ≤ n ≤ 28W − 1)

∆ ` n : S(n)

∆ ` t1 = t2 true

∆ ` S(t1) ≤ S(t2)
∆ ` t : N

∆ ` S(t) ≤ BW

Figure 3.3: Elementary Rules for Singletons

The introduction mechanism for guarded types differs slightly between TALT-R and MiniTALT-
R. In both systems, there is a guarded type introduction rule for values:

(∆, ϕ true);Ψ ` v : τ

∆;Ψ ` v : ϕ ⇒ τ

According to this rule, to conclude that v has type ϕ ⇒ τ it suffices to show that v has type τ , under
the assumption that ϕ is true. Importantly, the derivation of v : τ may depend on the hypothesis
ϕ true; v need not be well-typed at all without it. It is worth noticing that guarded types bear a
certain similarity to ∀-types: both are introduced by typing a value under some new assumption,
and both are eliminated by subtyping rules that “validate” the assumption.

It is very important that one be able to give guarded types to code pointers—more important,
in fact, than for any other kind of value. In TALT-R, blocks of code are simply values, and so
the above rule is sufficient. In MiniTALT-R, instruction sequences are treated specially, so an
additional guarded type introduction rule for blocks is required:

Ψ; (∆, ϕ true) ` I : τ block

Ψ;∆ ` I : ϕ ⇒ τ block

This rule is analogous to the rule for values, and states that one may give a guarded type to (the
address of) a block of instructions that is well-typed under the assumption that the guard is true.

Singleton types in TALT and TALT-R play a role similar to that of singletons in DTAL [72] and
LTT [16]. In DTAL one writes a singleton type as int(x), where x is an “index expression”; in LTT
one writes SInt(M), where M is the proof-language representation of an integer. The TALT-R type
S(t) is well-formed when t is a well-formed constraint term (i.e., it has kind N), and contains at
most one value: the word-sized unsigned binary representation of the natural number denoted by
t. (If the meaning of t is outside the representable range, then S(t) is an empty type.) The most
elementary rules for singleton types are shown in Figure 3.3.

In DTAL and LTT, programs may perform arithmetic on values of singleton type, and the type
system tracks this manipulation symbolically by giving an appropriate singleton type to the result.
As it happens, the particular use I have in mind for singleton types is to describe a counter which
is repeatedly decremented until it reaches zero. Consequently, the only form of arithmetic I will
need for singletons is a combined subtract-and-conditional-jump operation; it is for this reason
that the subjae instruction is included in TALT-R. As I have already mentioned, the instruction
sequence (subjae r d, o1, o2, o3 I) subtracts the value of o2 from o1 and stores the result in r d; if
this result is greater than or equal to zero, control jumps to the address in o3; otherwise, execution
continues with I . The subjae instruction has a special singleton-aware typing rule:

∆;Ψ;Γ{r d:BW, ck :t} ` I
∆;Ψ;Γ ` o3 : ∀a:N.(u = v + a) ⇒ Γ{r d:S(a), ck :t} → 0

∆;Ψ; Γ ` o1 : S(u) ∆;Ψ; Γ ` o2 : S(v) (Γ(ck) = 2 + t)

∆;Ψ; Γ ` subjae r d, o1, o2, o3 I

34 CHAPTER 3. TALT-R: A TYPED ASSEMBLY LANGUAGE FOR RESPONSIVENESS

This rule shows how to type a subjae instruction when the two operands to be subtracted have
singleton types S(u) and S(v) respectively. Notice the different typing conditions associated with
the two possible outcomes of the conditional jump. If the branch is taken, then the result is non-
negative and hence the subtraction falls within the domain of natural number arithmetic; the
target of the jump is therefore allowed to assume that the result is some natural number a such
that the larger operand is equal to the sum of a and the smaller operand. If the branch is not taken,
however, the result of the subtraction is negative and cannot be reasoned about in my theory of
natural numbers; hence the instruction sequence I must be well-formed assuming only that the
destination register contains an integer. Finally, note that the virtual clock is decremented by two
instead of by one; this is because subjae is implemented by a sequence of two instructions on a
concrete IA-32 machine.

3.3.4 Expanding Singleton Reasoning

Although subjae is the only singleton instruction required for the compilation strategies I de-
scribe in this thesis, and the only one supported by my implementation of TALT-R, there are a few
other singleton-related instructions and typing rules that are sound in principle and for which
support could easily be added.

Checked Addition It may be desirable to include a singleton-aware add instruction. The main
difficulty here is that the TALT-R constraint logic is concerned with (arbitrary) natural numbers
whereas arithmetic in assembly language is performed modulo 28W . Expressing the results of
modular arithmetic in the constraint logic presents two difficulties: first, it requires adding multi-
plication to the logic; second, it does not allow one to reason about inequalities as easily. A more
attractive solution is for the singleton addition operation to be a “double” instruction like subjae ,
so that it automatically detects when its result is inconsistent with natural number arithmetic. Just
as a subtraction can be reflected in the logic as long as the result is not negative, an addition can
be accounted for as long as it does not overflow. The appropriate compound instruction for sin-
gleton addition is therefore addjnc , or “add and jump if no carry.” The syntax and typing rule
are analogous to subjae (but the typing premise for the jump target is simpler):

∆;Ψ;Γ{r d:BW, ck :t} ` I
∆;Ψ;Γ ` o3 : Γ{r d:S(u + v), ck :t} → 0

∆;Ψ; Γ ` o1 : S(u) ∆;Ψ; Γ ` o2 : S(v) (Γ(ck) = 2 + t)

∆;Ψ; Γ ` addjnc r d, o1, o2, o3 I

Inverted Checked Arithmetic In the subjae and addjnc instructions, the conditional branch is
taken if the result of the arithmetic operation can be given a useful singleton type and falls through
if it cannot. This is convenient for the particular idiom I have in mind for subjae (to be covered in
Chapter 6), but the system would be more symmetrical if there were alternative checked singleton
arithmetic instructions with the branch conditions reversed. There is no difficulty in principle with
adding subjb (“subtract and jump if below”) and addjc (“add and jump if carry”) to TALT-R.
The following typing rules soundly describe their semantics:

∆;Ψ;Γ ` o3 : Γ{r d:BW, ck :t} → 0
(∆, a:N, (u = v + a) true);Ψ; Γ{r d:S(a), ck :t} ` I

∆;Ψ;Γ ` o1 : S(u) ∆;Ψ; Γ ` o2 : S(v) (Γ(ck) = 2 + t)

∆;Ψ; Γ ` subjb r d, o1, o2, o3 I

3.4. CERTIFICATION AND VERIFICATION 35

∆;Ψ;Γ{r d:S(u + v), ck :t} ` I
∆;Ψ;Γ ` o3 : Γ{r d:BW, ck :t} → 0

∆;Ψ; Γ ` o1 : S(u) ∆;Ψ; Γ ` o2 : S(v) (Γ(ck) = 2 + t)

∆;Ψ; Γ ` addjc r d, o1, o2, o3 I

In fact, it is important for performance reasons to allow the programmer or compiler to choose
the sense of conditional jumps. Most IA-32 processors use a static branch prediction heuristic
which assumes (until more information is available) that backward conditional jumps are taken
and forward conditional jumps are not taken. In order to produce fast code for superscalar ar-
chitectures with deep pipelines, programmers are encouraged to arrange their code so that these
assumptions are likely to be accurate [39].

Unchecked Arithmetic When I discuss the application of TALT-R to different safety policies in
Chapter 6, I will encounter situations where a subtraction of two singleton values is required and
it is statically known which of the two quantities is larger. In this case the jae part of the subjae
instruction is unnecessary (and its presence obnoxious) because that branch will never be taken.
The following rule for unchecked singleton subtraction allows the operation to proceed under
those conditions:

∆;Ψ;Γ ` o1 : S(u + v) ∆;Ψ; Γ ` o2 : S(u)
∆;Ψ; Γ′{ck :t} ` I ∆;Ψ;Γ ` d : S(v) → Γ′ (Γ(ck) = 1 + t)

∆;Ψ; Γ ` sub d, o1, o2 I

A rule for unchecked singleton addition, analogous to this one, is presumably sound but seems
less likely to be helpful in practice.

Ordering and Addition Another reasonable typing rule that could be added to TALT-R to enrich
the capabilities of its singleton types, but for which I have not found an immediate need, is the
following subtyping rule:

∆ ` t ≤ u true

∆ ` S(u) ≤ ∃a:N.S(t + a)

It states that if t ≤ u, then the number u can be thought of as the sum of t and an unknown natural
number.

3.4 Certification and Verification

The process of producing and verifying certified binaries using TALT-R is analogous to the process
for TALT described in Chapter 2. Specifically, a compiler wishing to target TALT-R outputs pro-
grams in EXTALT-R, a user-friendly explicitly-typed assembly language. The TALT-R assembler
transforms an EXTALT-R program into a TBF file (see Section 2.1.3, Figure 2.2) by translating the
assembly instructions into binary machine code and generating a certificate. The certificate is (the
LF representation of) an XTALT-R program. The consumer-side certificate verifier is analogous to
the one described for TALT.

Because of the strength of the analogies between the TALT and TALT-R families of languages, I
will sometimes refer to XTALT and XTALT-R as “the ‘X’ languages” and to EXTALT and EXTALT-R

as “the ‘EX’ languages.”

36 CHAPTER 3. TALT-R: A TYPED ASSEMBLY LANGUAGE FOR RESPONSIVENESS

3.4.1 XTALT-R

The XTALT-R language, like XTALT, is designed to be as easy as possible to type-check. This means
removing all the ambiguity and implicitness that make type-checking for TALT-R itself (presum-
ably) impossible. Like the “Mini” languages detailed in this thesis, XTALT and XTALT-R divide
the contents of a “program”, which in TALT and TALT-R is just a single large value, into labeled
blocks; unlike the “Mini” languages, the “X” languages require the programmer to specify a type
for each label. This essentially identifies the memory typing (Ψ) under which the whole program
is supposed to be well-typed, eliminating an ambiguity that would be difficult to resolve by infer-
ence.

An even greater source of difficulty in type-checking is the richness of the theory of subtyping
in TALT and TALT-R. (Most of the difficulties here are reflected in the “Mini” languages.) To avoid
the need to decide the (presumably) undecidable subtyping relation, the “X” languages replace
the subtyping judgment ∆ ` τ1 ≤ τ2 by a calculus of coercions. Essentially, a coercion is a reified
subtyping derivation: the coercion typing assertion ∆ ` q : τ1 ≤ τ2 means that the coercion q
represents a proof that τ1 is a subtype of τ2. The subsumption rule for operands in TALT or TALT-
R,

∆;Ψ;Γ ` o : τ ′ ∆ ` τ ′ ≤ τ

∆;Ψ;Γ ` o : τ

is replaced in the respective “X” languages by coercion application, written @q o and having the
typing rule:

∆;Ψ;Γ ` o : τ ′ ∆ ` q : τ ′ ≤ τ

∆;Ψ;Γ ` @q o : τ

The coercions themselves, in turn, correspond almost exactly to subtyping derivations. There is a
form of coercion for each subtyping rule in the underlying theory, so that ∆ ` τ ≤ τ ′ is derivable
if and only if there is a coercion q such that ∆ ` q : τ ≤ τ ′. For instance, the rule stating that any
type is a subtype of nonsense (of the appropriate size) corresponds to a coercion called forget .
That is:

∆ ` τ : Ti
∆ ` τ ≤ ns i corresponds to

∆ ` τ : Ti
∆ ` forget : τ ≤ ns i

XTALT-R must extend XTALT with coercion forms for all of the new subtyping rules TALT-R

adds to TALT. The ones that require the most novelty are the rules with constraint-truth premises,
like the guard satisfaction rule:

∆ ` τ : T ∆ ` ϕ true

∆ ` (ϕ ⇒ τ) ≤ τ

In order for a typechecker to accept a coercion witnessing this relation as well-formed, it must be
evident that ϕ is true. The easiest way to achieve this is to require the coercion itself to provide the
evidence; in other words, it must contain a proof of ϕ. Thus, the coercion has the form satisfy π,
where π is a proof term:

∆ ` π : ϕ

∆ ` satisfy π : (ϕ ⇒ τ) ≤ τ

Proof terms reify truth derivations in exactly the same way that coercions reify subtyping deriva-
tions. (The truth derivations themselves are discussed in Chapter 4.) They appear in the coercion
forms associated with all TALT-R subtyping rules that have constraint-truth premises.

3.4. CERTIFICATION AND VERIFICATION 37

3.4.2 EXTALT-R

The “EX” languages, the explicitly-typed languages generated by compilers and processed by the
certifying assemblers, are the most concrete, public and visible incarnations of TALT and TALT-R.
They are therefore the variants for which human-readability and -writability are the most impor-
tant. This creates tension between the desire for ease of use on the one hand, and the fact that
removing almost any of the annotations in the “X” languages leads to undecidability on the other.

EXTALT-R follows EXTALT in retaining the calculus of coercions used in the “X” languages
to circumvent the presumed undecidability of subtyping. The one source of nonuniformity is the
need for proof terms in XTALT-R to reify constraint truth derivations. EXTALT-R does not use proof
terms, for two reasons: First, since proof terms are a new syntactic class, distinct from type con-
structors and coercions, adding them to EXTALT-R would represent a significant increase in syn-
tactic complexity compared to EXTALT. Second, the very concept of proof terms being unfamiliar
to most programmers other than the few who are type theory experts, requiring them to appear in
programs would greatly increase the steepness of the learning curve for EXTALT-R programming
or, more importantly, certifying compiler development.2 Third, truth deriviations are ubiquitous
in the typings of even the most elementary TALT-R programs, because the ck terms in register file
types must very often be rewritten (using an equality formula and the register file subsumption
rule) in order to match the form required by the omnipresent side conditions in instruction typing
rules.

The purpose of these side conditions is to capture the idea that the virtual clock is decremented
for every instruction. The EXTALT-R assembler performs this symbolic decrementation automati-
cally, using a very simple heuristic. When the type-checker encounters an instruction requiring k
“ticks” of the virtual clock and the current register file type is Γ, it updates Γ(ck) to dec(Γ(ck), k)
before moving to the next instruction as long as the latter is well-defined according these rules:

dec(n, k) = n − k if n ≥ k
dec(t + t′, k) = dec(t, k) + t′

If application of these rules fails, the assembler gives up and reports a type error.

The other constructs that demand proof terms are subtyping judgments, most commonly the
register-file subtyping that must be checked for jump operands and the GUARD-ELIM rule reified
as the satisfy coercion, discussed earlier. In each of these cases, the assembler does not require
the program text to contain a proof term, but instead tries to construct one using a semi-decision
procedure for the TALT-R constraint logic called depth-limited semantic proof search (DLP), discussed
in the next chapter. In fact, the logic is decidable; however, DLP is sufficient for the purposes of
my responsiveness-certifying compiler, and since I have not found a decision procedure as simple
and efficient I have not attempted to implement anything more advanced. Future work on TALT-R

may require replacing the existing constraint logic with something more heavyweight, in which
case the certification process would presumably need to incorporate a serious theorem prover.

2Coercions, of the kind found in the “X” and “EX” languages, are also unfamiliar. Their presence in the language
can be rationalized to the extent that they act more or less like functions that change the type of a value, like C-style
type casts which everyone understands. On the other hand, the verbosity of the coercions that appear in most EXTALT

programs indicates that the concise and user-friendly representation of the information they carry is a language design
issue worthy of attention.

38 CHAPTER 3. TALT-R: A TYPED ASSEMBLY LANGUAGE FOR RESPONSIVENESS

3.5 Chapter Summary

In this chapter, I stated a specific timing policy that applies to many real-world situations. Mo-
tivated by this policy, I presented most of the design of a type system to certify compliance with
this policy (the remainder of the static semantics will be revealed in the next chapter).

The type system, TALT-R, is an extension of TALT with clock reasoning in the style of TALres
and dependent types in the style of DTAL. I have described the salient features of its static seman-
tics, including potential variations which, as I will show later on, open the door to certification of
other interesting timing and resource control policies.

Chapter 4

The TALT-R Constraint Logic

One of the most important features of TALT-R that makes it possible to generate certifiable pro-
grams without inserting excessively many yields is its constraint logic. Through the mechanism of
guarded types, discussed in Chapter 3, the typing of a program can depend on the “truth” of some
constraint formulas; this feature of the type system allows portions of programs to be given types
that describe their clock behavior more precisely than would otherwise be possible, which in turn
amounts to the ability to type programs whose clock behavior requires more subtle justification
than would otherwise be allowed.

In order to define a type system that has this built-in constraint logic, and to prove theorems
about that system formally, it is necessary to give a formal definition for the logic itself. This in-
volves not only specifying the “language” of formulas upon which typing can depend, but also
defining precisely what it means for a formula to be true. In the design of TALT-R it was critical
to find a balance between simplicity and power: the simpler the logic, the less effort a formal
safety proof would require, but a certain amount of proving power was necessary in order to type
interesting programs.1 My goal, therefore, was to find the simplest possible logic that could ac-
comodate my compilation strategy. The results of that exercise make up this chapter. First I set
down the definition of the TALT-R constraint logic, after first discussing some general considera-
tions that influenced its design. The remainder of the chapter investigates the metatheory of the
logic more deeply, to better understand its algorithmic properties and characterize its power.

4.1 The Logic

4.1.1 Terms and Formulas

The TALT-R constraint logic can be seen as a language of first-order predicates that lacks any
logical connectives or quantifiers. The propositional connectives pose no theoretical difficulty,
and I conjecture that some limited use of quantifiers would not either.

Formally, the terms of the logic are the static terms of kind N and the formulas are the constraint
formulas as defined in Chapter 3. In this, chapter, though, I want to consider the logic in isolation
from the rest of the type system. I therefore restrict my attention to “simple” terms and formulas,
which are characterized by a very simple structure.

1As mentioned at the beginning of Chapter 3, I did not actually do a formal safety proof for TALT-R; however, it was
still an important design criterion to make the execution of such a proof as straightforward as possible.

39

40 CHAPTER 4. THE TALT-R CONSTRAINT LOGIC

Definition 4.1 The simple terms are the static terms generated by the grammar:

t ::= a | n | t1 + t2.

A simple formula is a constraint formula containing only simple terms.
A pre-simple context is one that contains no kinding assumptions a:K with K 6= N.
A simple context is a pre-simple context in which all the constraint terms that appear are simple.

(Alternatively, the simple terms are the β-normal terms t for which there exists a pre-simple
context ∆ such that ∆ ` t : N.) Beginning with Section 4.1.2, I shall tacitly assume that all con-
texts, terms and formulas encountered in the remainder of this chapter are simple. Fortunately,
the “simple” system and the unrestricted system are of comparable power: in particular, it can
be shown that for any well-formed context ∆ and well-formed formula ϕ there exist a simple
context ∆′ and simple formula ϕ′ such that ∆ ` ϕ true if and only if ∆′ ` ϕ′ true. Moreover, the
simple versions can be computed from the originals, so decidability of the simple system implies
decidability for well-formed judgments in the unrestricted system.2

4.1.2 Defining Truth

While discussing of TALT-R’s static semantics in Chapter 3 I referred to, but did not define, the
constraint truth judgment form ∆ ` ϕ true, which appears as a premise in a few key rules of
the static semantics. It is the business of this section to give a definition for this judgment; first,
though, I will review some of the requirements for this definition.

That the truth judgment should be sound seems too obvious a necessity to need any discussion.
After all, how can the type system be sound for programs as a whole if one of its judgments does
not have the intended meaning? What makes this requirement interesting for TALT-R is that it is
not enough for the truth judgment merely to be sound; I need to be able to prove its soundness in
Twelf. As I shall argue, this rules out simple “denotational” definitions of truth such as the one
proposed for integer constraints in DTAL [72]; instead, I will define truth “syntactically”, using a
carefully chosen set of axioms and inference rules.3

So, what does soundness of the constraint logic mean, and where does it come up in the Twelf
proof of type safety? To answer these questions, consider the rule for register file subtyping, which
has a truth premise (the one in the box):

∆ ` t′ ≤ t true ∆ ` τ ≤ τ ′ ∆ ` τi ≤ τ ′
i for 1 ≤ i ≤ N

∆ ` {eax :τax, . . . , ebp :τbp, esp :τsp, ck :t} ≤ {eax :τ ′
ax, . . . , ebp :τ ′

bp, esp :τ ′
sp, ck :t′}

Let Γ be the register file type on the left and Γ′ be the one on the right. Then this rule permits Γ to
be a subtype of Γ′ only if the judgment ∆ ` Γ′(ck) ≤ Γ(ck) true holds. The key lemma in which
the effect of this premise is felt is the register file subsumption lemma:

Lemma 4.1 If · ` Γ ≤ Γ′ and Ψ ` R : Γ, then Ψ ` R : Γ′.

Here R is a register file. The judgment form Ψ ` R : Γ (which we have not encountered before
because register files appear only in the dynamic semantics) means that the register file R has type

2This is perhaps an unfair simplification of the TALT type theory as implemented; in particular, it depends on the
fact that the static term language of MiniTALT-R is strongly β-normalizing. In fact, the static term language of TALT as
formalized in LF is not normalizing, and the truth judgment in that system is undecidable.

3Readers familiar enough with Twelf to consider this decision a no-brainer may skip the next few paragraphs.

4.1. THE LOGIC 41

Γ (under heap assumptions Ψ); it requires, among other things, that the clock value in R is greater
than or equal to the number denoted by Γ(ck). Thus in order to prove this lemma we need to
know, among other things, that if the number denoted by Γ(ck) is less than or equal to m, and the
truth judgment · ` Γ′(ck) ≤ Γ(ck) true holds, then the number denoted by Γ′(ck) is also less than
or equal to m. We get this from the soundness lemma:

Lemma 4.2 (Soundness of Truth) If · ` n′ ≤ n true, then n′ ≤ n.

This is the most important soundness result for the TALT-R constraint logic.

Observe that the soundness lemma, which we wish to be able to prove as a Twelf metatheorem,
has an instance of the truth judgment on the left side of an implication. This means that if the
definition of truth involves any universal quantification, the soundness lemma will not be a Π2

sentence and hence will not be provable with Twelf. As a result we can forget about “semantic”
definitions like the following:

Non-Definition. ∆ ` ϕ true iff the entailment it denotes holds over the natural num-
bers: that is, iff for any substitution of natural numbers for the constraint term variables
declared in ∆ such that the constraint hypotheses in ∆ hold, ϕ holds.

The fact that this definition presupposes knowledge of the natural numbers, which are not built
into Twelf, is annoying but it is not the issue. The real problem is the quantification “for any
substitution. . . ,” which cannot be encoded with an LF type.

The answer to this, of course, is to define the truth judgment the way anything else is defined in
Twelf: inductively, as the least set of judgments closed under certain inference rules. This means
that TALT-R’s notion of “truth” is really more like “provability”, with the rules for constructing
proofs fixed in advance as part of the type system.

Formal theories of the natural numbers seem to come in two main varieties, neither of which is
appropriate for TALT-R. The first variety comprises theories like LXres [18], whose power comes
from a rich term language (featuring addition, multiplication and primitive recursion over natural
numbers, as well introduction and elimination forms for some other types) and the associated
theory of equality (which understands basic properties of addition and multiplication as well as
βη-conversion). Such a theory is simple to describe, but does not support hypothetical reasoning,
which TALT-R must if guarded types are to make sense.

The second variety takes the form of a set of axioms expressed in a logic; the logic is generally
first-, second- or higher-order classical or intuitionistic predicate logic, and the axioms usually re-
semble those of Peano or Presburger arithmetic. These theories generally do support hypothetical
reasoning, and as a group they are very powerful: in principle, one could use the Zermelo-Fränkel
axioms for sets as the basis for such a theory and formalize all the mathematics one needed. Unfor-
tunately, this class of theories is also unacceptable for TALT-R. That most of them are undecidable
(Presburger arithmetic being the notable exception) is the least of their drawbacks: after all, typ-
ing in TALT is already presumed undecidable. Of much greater concern is the fact that proofs of
even the most routine facts in these theories are large, difficult to construct, and even harder (for
humans) to read. This would be crippling for TALT-R, since the certificate for a program must
include proofs of all the constraint judgments on which its typing depends. These proofs would
have to be generated during certification and transmitted over a network, and a large investment
of time would be required to produce formal proofs of all the “lemmas” required. The complexity
of the proofs that would have to be provided to the certificate generation algorithm would re-
duce the human-readability and -writability of EXTALT-R, the explicitly typed input language of

42 CHAPTER 4. THE TALT-R CONSTRAINT LOGIC

the assembler. Finally, and most damningly, the consistency of the axiomatization would have to
be proven in Twelf; perhaps this could be managed, but to the best of my knowledge there is no
published work on applying Twelf to consistency proofs in theories this complex.

The goal for TALT-R, then, was to devise a simple, though necessarily incomplete, axiomatiza-
tion of natural number arithmetic subject to the following three considerations. First, the sound-
ness of the theory must be provable as a Twelf metatheorem. Second, although the theory need not
be complete in any formal sense, it must be “complete enough” to derive all of the judgments nec-
essary to type the output of my compiler. Finally, the theory must be decidable, and furthermore
it must be possible to produce proofs for derivable judgments automatically.

Note on Decidability

Typing in in the implicitly-typed TALT language is undecidable. A certificate for a TALT program,
therefore, must contain at least enough information to convince the verifier that a typing deriva-
tion exists. So that the TALT assembler can produce such a certificate, the EXTALT input to the
assembler must be heavily annotated. In particular, wherever the typing of the program depends
on subsumption, the EXTALT program must contain a coercion, which is really a representation of a
derivation of the necessary subtyping relationship. It might seem reasonable, therefore, to require
an EXTALT-R program to include proofs of constraint formulas on which its typing depends.

Forcing the arithmetic proofs to be present in the EXTALT-R representation of a program has
a serious drawback: it requires the person or program that generates the EXTALT-R program to
produce the proofs. This seems like an excessive burden. Proofs in any theory of arithmetic are
likely to be dense and hard for humans to read, which means that EXTALT-R programs whose
typing depends on them will be very difficult to write or debug by hand. As a result of these
considerations, I adopted the view that while the TALT-R type theory itself is defined in terms
of a particular axiomatization of the constraint logic, from the point of view of a programmer or
compiler writer generating EXTALT-R code, the structure of proofs is an implementation detail
that does not need to be understood; furthermore, theorem proving in the TALT-R constraint logic
is a task common to all producers of TALT-R programs, so it is the responsibility of the TALT-R

implementor (that is, me) to provide a tool that does it. The theorem prover is integrated into the
assembler, so EXTALT-R programs never need to contain proofs.

In principle, the assembler’s theorem prover does not need to be complete, even with respect
to the TALT-R constraint theory (which itself need not be complete with respect actual natural
number arithmetic). However, it is highly desirable that the input language of the assembler have
a concise and accessible definition so that programmers and compiler writers have some basis on
which to predict whether their EXTALT-R code will be accepted or not. Since the assembler now
includes the constraint prover, the definition of EXTALT-R must include a description of the set of
constraint judgments it will be able to derive. In other words, if the theorem prover I build into
the assembler decides a proper subset of TALT-R’s theory of arithmetic, I must be able to give a
concise definition of that decidable subset.

In fact, I have done a combination of these things: the theory presented in this chapter is de-
cidable as-is, as I prove in Section 4.2, but I have not implemented a complete decision procedure.
Instead, I describe a convenient metric of proof complexity that can be used to turn a sound and
complete but unbounded proof search into an incomplete but terminating procedure, which I have
implemented in the TALT-R assembler. I claim, and will demonstrate in Chapter 7, that a proof
search bounded in this way is “complete enough” for the compilation strategy described there.

4.2. DECIDABILITY 43

((ϕ true) ∈ ∆)

∆ ` ϕ true
∆ ` t : N

∆ ` t = t true

∆ ` t2 = t1 true

∆ ` t1 = t2 true

∆ ` t1 = t3 true ∆ ` t3 = t2 true

∆ ` t1 = t2 true

∆ ` t1 = t′1 true ∆ ` t2 = t′2 true

∆ ` t1 + t2 = t′1 + t′2 true ∆ ` m + n = m + n true

∆ ` t : N

∆ ` 0 + t = t true

∆ ` t1 : N ∆ ` t2 : N

∆ ` t1 + t2 = t2 + t1 true

∆ ` ti : N (for i = 1, 2, 3)

∆ ` (t1 + t2) + t3 = t1 + (t2 + t3) true

(m ≤ n)

∆ ` m ≤ n true

∆ ` t1 = t2 true

∆ ` t1 ≤ t2 true

∆ ` t1 ≤ t3 true ∆ ` t3 ≤ t2 true

∆ ` t1 ≤ t2 true

∆ ` t1 ≤ t2 true ∆ ` t2 ≤ t1 true

∆ ` t1 = t2 true

∆ ` t1 ≤ t′1 true ∆ ` t2 ≤ t′2 true

∆ ` t1 + t2 ≤ t′1 + t′2 true

∆ ` t + t1 ≤ t + t2 true

∆ ` t1 ≤ t2 true

∆ ` t : N

∆ ` 0 ≤ t true

Figure 4.1: Truth of Formulas

The Truth Judgment

The rules defining the truth judgment are given in Figure 4.1. As mentioned earlier, we will
assume for the duration of this chapter that contexts ∆ contain only constraint term kinding as-
sumptions (a:N) and constraint hypotheses of the form ϕ true where ϕ is simple.

The following “substitution” or “cut” property will come in useful later on.

Proposition 4.1 (Cut) If ∆, ϕ ` ϕ′ true and ∆ ` ϕ true, then ∆ ` ϕ′ true.

Since truth is a hypothetical judgment rather than a sequent-style proof system, the proof of this
property is very straightforward.

4.2 Decidability

The main result of this section is the decidability of the TALT-R constraint logic:

Given ∆ and ϕ, it is decidable whether or not ∆ ` ϕ true.

The fact that this logic is “complete enough” is part of the type preservation theorem for my
compilation strategy, which I will cover later on. Moreover, its soundness can be proven in Twelf.4

4.2.1 Proof Overview

The proof of decidability is based on two main insights, which taken together reveal that the
existence of a proof for a given formula (in a given context) is equivalent to the existence of a

4Essentially the same constraint logic was added to the TALT implementation by Karl Crary shortly after I proposed
its inclusion in TALT-R; the Twelf safety proof for TALT therefore includes a soundness proof for this logic.

44 CHAPTER 4. THE TALT-R CONSTRAINT LOGIC

feasible solution to a certain integer linear program that is easy to extract from the formula and
the context. (This may seem anticlimactic: after all, the use of integer programming to solve
constraints of this kind is quite common. However, deciding the validity of a constraint over the
integers is not the same thing as deciding its derivability in this logic, which is relatively weak; I
therefore had no a priori expectation that any off-the-shelf algorithm would work.)

The first insight is that, modulo regrouping and reordering, a term t is just a finite sum of
“atomic” terms, each of which is either a variable or a literal number. If we imagine “combining
like terms” as in high-school algebra (which is really just counting the number of occurrences of
each variable and adding together all the literals), the formula is essentially just a linear polyno-
mial in several variables with natural number coefficients. Using this fact it is easy to imagine a
notion of canonical form for terms. To reduce a term to canonical form, simply reassociate and
reorder its atomic subterms until it is, say, a right-associated sum with all the occurrences of each
variable appearing consecutively and a single literal at the end; this representation is canonical
except for the ordering of the variables.

For the purposes of this proof, I have found that the notion of syntactic reduction to canonical
form is not particularly convenient. Instead, I “factor” the extraction of a canonical form into an
interpretation function [[·]] mapping constraint terms to linear polynomials (a concept I will make
precise shortly) and a representation function R in the other direction. The linear polynomials here
are objects of the metatheory, not constraint terms. The composition R[[·]] can be viewed as the
extraction of a canonical form in the sense that (under suitable well-formedness conditions), if ∆
contains no hypotheses of the form ϕ true then ∆ ` t = u true if and only if R[[t]] and R[[u]] are
the same. (Defining the representation function requires assuming that the set Var of variables
is well-ordered.) However, the linear polynomial [[t]] is a more convenient object to reason about
than the term R[[t]]: the former lives in a metatheoretic structure with an addition operator that
is commutative and associative, while the latter lives in a syntactic theory with a formal addition
operator that is commutative and associative up to provable equality.

The second insight is that treating terms as polynomials has the effect of trivializing most of
the axioms in the logic. I devise an interpretation for formulas that trivializes several other rules in
the same way. The rules making provable equality an equivalence relation and ≤ a partial order
become trivial, and importantly, so does the rule allowing cancellation of a subterm appearing
on both sides of an inequality. Under this interpretation, the only rules that remain nontrivial
are the hypothesis rule, the nonnegativity rule (giving 0 ≤ t for any t) and the monotonicity
rule (allowing inequality formulas to be “added” as in high school algebra) — that is, a proof
simply adds together several hypotheses along with one instance of the nonnegativity axiom. The
possibility of doing this for any particular goal formula and set of hypotheses is easily formulated
as an integer program.

4.2.2 Interpretation of Terms

Syntactically, the terms of the constraint logic contain both the natural numbers and the constraint
term variables and are closed under formal addition. Viewed modulo provable equality, formal
addition is commutative and associative, agrees with integer addition on integer arguments, and
has zero as an identity. My first step in showing that the provable equality and provable inequality
relations are decidable is to give an interpretation of constraint terms into a structure with a com-
putable addition operation that has these properties up to equality rather than only up to provable
equality.

4.2. DECIDABILITY 45

Definition 4.2 A linear polynomial is a function P : Var∪{1} → Z that is zero at all but finitely many
points. We call the set of all such functions Poly. If P (x) ≥ 0 for all x, we say P is nonnegative; Poly+

is set of all nonnegative linear polynomials. The letters F and G will be understood to range over Poly+.
As a matter of notation, if P (1) = m0 and P (ai) = mi for 1 ≤ i ≤ n and P (b) = 0 for all b /∈

{a1, . . . , an}, then we write P as
m0 + m1a1 + · · · + mnan

optionally omitting m0 if it is zero. Note that the order of the terms in such a rendering is insignificant.

The sum P + Q is defined as the pointwise sum of the functions P and Q; this gives the usual
meaning of polynomial addition. Subtraction and scalar multiplication are defined analogously. I
will also need the pointwise meet operation u and the “bounded subtraction” operation defined
as follows:

(P u Q)(x) = min(P (x), Q(x))
(P 	 Q)(x) = P (x) − min(P (x), Q(x))

=

{
P (x) − Q(x) if P (x) ≥ Q(x)
0 if Q(x) > P (x)

It will be important that for any polynomials P and Q, P = (P 	 Q) + (P u Q).
If F is a nonnegative linear polynomial, we say that ∆ ` F if for variables a, F (a) 6= 0 implies

a ∈ ∆. Clearly, if ∆ ` F and ∆ ` G then ∆ ` F + G; furthermore, if ∆ ` F + G then ∆ ` F and
∆ ` G.

Definition 4.3 The interpretation [[·]] : Term → Poly+ of terms as nonnegative linear polynomials is
defined as follows:

[[n]] = n [[a]] = a [[t + u]] = [[t]] + [[u]]

Observe that Poly+ contains convenient subsets corresponding to the variables and the natural
numbers, and that it forms a commutative monoid whose unit is [[0]].

Let � denote the pointwise partial ordering on polynomials:

P � Q iff for all x ∈ Var ∪ {1}, P (x) ≤ Q(x)

We will say P ≺ Q when P � Q and P 6= Q. When restricted to nonnegative polynomials, ≺
is well-founded. Assume the set Var of variables is also well-ordered by some relation @. The
resulting induction principles ensure that the following representation function is well-defined.

Definition 4.4 The representation R : Poly+ → Term of nonnegative linear polynomials as terms is
defined as follows:

• For constants m ∈ Z, R(m) = m.

• For non-constant polynomials F , R(F) = a + R(F − a) where a = min{x ∈ Var | F (x) 6= 0}.

The minimum is with respect to @. Note that this is a valid inductive definition, since in the second case
F − a is nonnegative and F − a ≺ F .

46 CHAPTER 4. THE TALT-R CONSTRAINT LOGIC

The representation of polynomials as terms is a right inverse of the interpretation of terms as
polynomials, and a left inverse up to some syntactic manipulation.

Lemma 4.3 For any nonnegative polynomial F , [[R(F)]] = F .

Proof: By induction on F .

Lemma 4.4 If ∆ ` F and ∆ ` G, then ∆ ` R(F + G) = R(F) + R(G) true.

Proof: By induction on F .

Lemma 4.5 If ∆ ` t : N, then ∆ ` R[[t]] = t true. It follows that for well-formed terms t and u, if
[[t]] = [[u]] then ∆ ` t = u true.

Proof: By induction on (the kinding of) t, using Lemma 4.4.

As an aside, note that the ordering on Var is necessary only to make the choice of a in the
second part of the definition of R unique; one could do without it entirely by defining R as a one-
to-many relation rather than a function. This would make the proofs of these last three lemmas
somewhat awkward, but would render the canonical form R[[t]] insensitive to the names of the
free variables in t. Since simple formulas contain no bound variables, I consider sacrificing this
insensitivity a reasonable tradeoff.

4.2.3 Interpretation of Formulas

Next, I define an interpretation of formulas in the constraint logic as constraints on linear polyno-
mials.

Definition 4.5 A polynomial constraint is an assertion of the form P = 0 or P ≤ 0, where P is a linear
polynomial (not necessarily nonnegative).

Definition 4.6 The interpretation [[·]] : Form → PConstr of formulas as polynomial constraints is defined
as follows:

[[t1 ≤ t2]] = ([[t1]] − [[t2]] ≤ 0) [[t1 = t2]] = ([[t1]] − [[t2]] = 0)

Because of the reflexivity and antisymmetry rules for inequality in the constraint logic, the
derivability of any equality formula t1 = t2 is equivalent to the derivability of both inequalities
t1 ≤ t2 and t2 ≤ t1; furthermore, the exact same formulas can be derived in a context containing an
equality hypothesis as in the context that contains inequality in both directions instead. Thus, as I
will show, it suffices to restrict our attention to inequality formulas. First, though, I must define a
representation function mapping polynomial constraints to constraint formulas, analogous to the
one for terms. The first step in defining this mapping is to show how to decompose the polynomial
on the left side of a polynomial constraint into the two nonnegative polynomials representing the
terms on both sides of an inequality formula.

Definition 4.7 If P is a linear polynomial, then its left-hand part PL and right-hand part PR are defined
as follows:

PL(x) =

{
P (x) if P (x) > 0
0 otherwise

PR(x) =

{
−P (x) if P (x) < 0
0 otherwise

That is, PL consists of the terms of P with positive coefficients, and PR consists of the terms of P with
negative coefficients.

4.2. DECIDABILITY 47

The decomposition into left-hand and right-hand parts is unique, in a sense made precise by
the following lemma.

Lemma 4.6 Let P , P ∗
L and P ∗

R be linear polynomials. Then P ∗
L = PL and P ∗

R = PR iff all three of the
following are true:

1. P ∗
L and P ∗

R are both nonnegative;

2. P = P ∗
L − P ∗

R; and

3. For any x ∈ Var ∪ {1}, either P ∗
L(x) = 0 or P ∗

R(x) = 0.

Proof:

(⇒): That conditions (1) and (2) hold for PL and PR is obvious. For condition (3), suppose
x ∈ Var∪{1}. If P (x) ≤ 0, then by definition PL(x) = 0; if P (x) > 0, then by definition PR(x) = 0.

(⇐): Assume conditions (1)–(3) hold. I need to show that P ∗
L = PL and P ∗

R = PR. So, suppose
x ∈ Var ∪ {1}. Condition (3) gives two cases:

Case: P ∗
L(x) = 0. By condition (2), P (x) = −P ∗

R(x). By condition (1), this means P (x) ≤ 0.
Hence PL(x) = 0 = P ∗

L(x) and PR(x) = −P (x) = P ∗
R(x).

Case: P ∗
R(x) = 0. By condition (2), P (x) = P ∗

L(x). By condition (2), then, P (x) ≥ 0. Hence
PL(x) = P (x) = P ∗

L(x) and PR(x) = 0 = P ∗
R(x).

End of Proof.

Henceforth I will gloss the third, somewhat awkward, condition by saying that PL and PR

have “disjoint domains”.

Definition 4.8 The syntactic representation R : PConst → Form of polynomial constraints as formulas
is defined by:

R(P ≤ 0) = (R(PL) ≤ R(PR))

Lemma 4.7 For any polynomial P , [[R(P ≤ 0)]] = (P ≤ 0).

Proof: Direct, using Lemma 4.3:

[[R(P ≤ 0)]] = [[R(PL) ≤ R(PR)]] = ([[R(PL)]] − [[R(PR)]] ≤ 0) = (PL − PR ≤ 0) = (P ≤ 0)

End of Proof.

Lemma 4.8 If ∆ ` t : N and ∆ ` u : N, then t ≤ u and R([[t ≤ u]]) are interderivable in context ∆. That
is,

1. ∆, (t ≤ u) ` R([[t ≤ u]]) true and

2. ∆,R([[t ≤ u]]) ` t ≤ u true.

Proof:

Let F = [[t]] and G = [[u]]. Then R([[t ≤ u]]) = R(F −G ≤ 0) = ((F −G)L ≤ (F −G)R. Observe
that

F − G = ((F u G) + (F 	 G)) − ((F u G) + (G 	 F)) = (F 	 G) − (G 	 F)

48 CHAPTER 4. THE TALT-R CONSTRAINT LOGIC

But F 	G and G	F are both nonnegative and have disjoint domains, so it follows that (F −G)L =
F 	 G and (F − G)R = G 	 F . Hence R([[t ≤ u]]) = (R(F 	 G) ≤ R(G 	 F)).

So, to prove part (1), let ∆′ = (∆, t ≤ u).
By the hypothesis rule, ∆′ ` t ≤ u true.
Observe that [[t]] = F = (F u G) + (F 	 G) and similarly [[u]] = (F u G) + (G 	 F).
By Lemma 4.4, ∆′ ` R(F uG)+R(F 	G) = R[[t]] true and ∆′ ` R[[u]] = R(F uG)+R(F 	G) true.
Applying Lemma 4.3, ∆′ ` R(F uG)+R(F 	G) = t true and ∆′ ` u = R(F uG)+R(F 	G) true.
By reflexivity and transitivity, ∆′ ` R(F u G) + R(F 	 G) ≤ R(F u G) + R(G 	 F) true.
By the cancellation rule, ∆′ ` R(F 	 G) ≤ R(F u G) true.
That is, ∆′ ` R([[t ≤ u]] true.

To prove part (2), let ∆′′ = (∆,R([[t ≤ u]])).
By the hypothesis rule, ∆′′ ` R([[t ≤ u]]) true.
That is, ∆′′ ` R(F 	 G) ≤ R(G 	 F) true.
Clearly ∆′′ ` R(F u G) : N; therefore by the reflexivity rules ∆′′ ` R(F u G) ≤ R(F u G) true.
By the monotonicity rule, ∆′′ ` R(F u G) + R(F 	 G) ≤ R(F u G) + R(G 	 F) true.
Reasoning as in part (1), ∆′′ ` t = R(FuG)+R(F	G) true and ∆′′ ` R(FuG)+R(G	F) = u true.
By reflexivity and transitivity, ∆′′ ` t ≤ u true.

End of Proof.

Lemma 4.9 (Addition of Provable Constraints) If ∆ ` R(P ≤ 0) true and ∆ ` R(Q ≤ 0) true then
∆ ` R(P + Q ≤ 0) true.

Proof:

By assumption, ∆ ` R(PL) ≤ R(PR) true and ∆ ` R(QL) ≤ R(QR) true.
By the monotonicity rule, ∆ ` R(PL) + R(QL) ≤ R(PR) + R(QR) true.
Using Lemma 4.4 and the reflexivity and transitivity rules, ∆ ` R(PL + QL) ≤ R(PR + QR) true.
By Lemma 4.8 and Proposition 4.1, ∆ ` R[[R(PL + QL) ≤ R(PR + QR)]] true.
By definition, [[R(PL + QL) ≤ R(PR + QR)]] = ([[R(PL + QL)]] − [[R(PR + QR)]] ≤ 0).
Applying Lemma 4.3, ([[R(PL + QL)]] − [[R(PR + QR)]] ≤ 0) = ((PL + QL) − (PR + QR) ≤ 0) =
((PL − PR) + (QL − QR) ≤ 0) = (P + Q ≤ 0) = (S ≤ 0).
Thus I have ∆ ` R(S ≤ 0) true, as desired.

End of Proof.

4.2.4 Semantic Proofs

To finish setting up the proof of decidability, I now define a notion of “proof” for polynomial
constraints. After proving that the syntactic provable inequality relation of TALT-R and this new
semantic provable inequality relation correspond, I will show that the existence of a semantic
proof for a given constraint is decidable.

Definition 4.9 The interpretation of contexts as sets of polynomial constraints is defined as follows:

[[∆]] = {[[t1 ≤ t2]] | (t1 ≤ t2) ∈ ∆}∪
{[[t1 ≤ t2]] | (t1 = t2) ∈ ∆}∪
{[[t2 ≤ t1]] | (t1 = t2) ∈ ∆}

4.2. DECIDABILITY 49

Definition 4.10 A semantic proof M = (A,F) consists of a finite multiset A of linear polynomials and
a nonnegative linear polynomial F . The yield of M (written

∑
M) is defined as

∑

M = (
∑

R∈A

R) − F

We say that M is a semantic proof of P ≤ 0 in context ∆ (written ∆ |= M : P ≤ 0) if
∑

M = P and, for
every R ∈ A, (R ≤ 0) ∈ [[∆]].

It is easy to show that every semantic proof corresponds to a syntactic proof. First, I prove
a lemma showing that each constraint in the interpretation of a context is syntactically provable,
then I prove the main soundness lemma.

Lemma 4.10 If (P ≤ 0) ∈ [[∆]], then ∆ ` R(P ≤ 0) true.

Proof:

There are three cases.

Case 1: (P ≤ 0) = [[t ≤ u]] and (t ≤ u) ∈ ∆. By the hypothesis rule, ∆ ` t ≤ u true. By
Lemma 4.8 and Proposition 4.1, ∆ ` R[[t ≤ u]] true, that is, ∆ ` R(P ≤ 0) true.

Case 2: (P ≤ 0) = [[t ≤ u]] and (t = u) ∈ ∆. By the hypothesis rule, ∆ ` t = u true. By the
reflexivity rule, ∆ ` t ≤ u true. The result follows as in part (1).

Case 3: (P ≤ 0) = [[u ≤ t]] and (t = u) ∈ ∆. By the hypothesis rule, ∆ ` t = u true. By the
symmetry rule for equality, ∆ ` u = t true. By the reflexivity rule for ≤, ∆ ` u ≤ t true. The
result follows as in part (1).

End of Proof.

Lemma 4.11 (Soundness)

1. If ∆ |= M : [[t ≤ u]], then ∆ ` t ≤ u true.

2. If ∆ |= M : [[t ≤ u]] and ∆ |= M ′ : [[u ≤ t]] then ∆ ` t = u true.

Proof: The proof of part (2) follows from part (1) by antisymmetry.
For part (1), let M = (A,F) and P =

∑
M =

∑
A − F . I need to show ∆ ` t ≤ u true; by

Lemma 4.8 and Proposition 4.1 it suffices to show that ∆ ` R[[t ≤ u]] true, that is, that ∆ ` R(P ≤
0) true.

To begin, notice that since F is nonnegative, (−F)L = 0 and (−F)R = F . By a proof rule,
∆ ` 0 ≤ R(F) true, i.e., ∆ ` R((−F) ≤ 0) true.

Also note that for every R ∈ A, (R ≤ 0) ∈ [[∆]] and thus ∆ ` R(R ≤ 0) true by Lemma 4.10.
Since A is finite, repeated application of Lemma 4.9 gives ∆ ` R(

∑
A ≤ 0) true. Using Lemma 4.9

once more, ∆ ` R(
∑

A − F ≤ 0) true, i.e., ∆ ` R(P ≤ 0) true.
End of Proof.

Showing that anything syntactically provable is semantically provable is a bit more interesting.

Lemma 4.12 If ∆ |= M : P ≤ 0 and ∆ |= M ′ : Q ≤ 0 then there exists an N giving ∆ |= N : (P +Q) ≤
0.

50 CHAPTER 4. THE TALT-R CONSTRAINT LOGIC

Proof:

Suppose M = (A,F) and M ′ = (A′, F ′). Then let N = (A] A′, F + F ′), and observe that

∑

N =
∑

(A]A′)− (F −F ′) =
∑

A+
∑

A′− (F −F ′) = (
∑

A−F)+ (
∑

A′−F ′) = P +Q.

Thus by definition ∆ |= M : (P + Q) ≤ 0.
End of Proof.

Lemma 4.13 (Completeness)

• If ∆ ` t ≤ u true then there is an M such that ∆ |= M : [[t ≤ u]].

• If ∆ ` t = u true then there is an M such that ∆ |= M : [[t ≤ u]] and an M ′ such that ∆ |= M ′ :
[[u ≤ t]].

Proof:

I will prove both parts simultaneously by induction on derivations.

Case:
((ϕ true) ∈ ∆)

∆ ` ϕ true

Sub-case: ϕ = (t ≤ u). Then [[t ≤ u]] ∈ [[∆]] and so ∆ |= ({[[t ≤ u]]}, 0) : [[t ≤ u]].

Sub-case: ϕ = (t = u). Then [[t ≤ u]] and [[u ≤ t]] are both in [[∆]]. Thus ∆ |= ({[[t ≤ u]]}, 0) :
[[t ≤ u]] and ∆ |= ({[[u ≤ t]]}, 0) : [[u ≤ t]].

Case:

∆ ` t2 = t1 true

∆ ` t1 = t2 true

∆ ` t1 = t2 true

∆ ` t1 ≤ t2 true

∆ ` t1 ≤ t2 true ∆ ` t2 ≤ t1 true

∆ ` t1 = t2 true

Each of these cases follows immediately from the induction hypothesis.

Case:

∆ ` m + n = m + n true

∆ ` t : N

∆ ` 0 + t = t true

∆ ` t1 : N ∆ ` t2 : N

∆ ` t1 + t2 = t2 + t1 true

∆ ` t : N
∆ ` t = t true

∆ ` ti : N (for i = 1, 2, 3)

∆ ` (t1 + t2) + t3 = t1 + (t2 + t3) true

In each of these rules the formula being proved has the form t = u where [[t]] = [[u]].
Thus in each case, [[t ≤ u]] = [[u ≤ t]] = (0 ≤ 0), and so (∅, 0) is a canonical proof of either direction.

Case:

∆ ` t1 = t′1 true ∆ ` t2 = t′2 true

∆ ` t1 + t2 = t′1 + t′2 true

By the induction hypothesis, [[t1 ≤ t′1]] and [[t2 ≤ t′2]] have semantic proofs in ∆.
That is, there exist semantic proofs of ([[t1]] − [[t′1]] ≤ 0) and ([[t2]] − [[t′2]] ≤ 0).
By Lemma 4.12, ([[t1]] − [[t′1]] + [[t2]] − [[t′2]] ≤ 0) is semantically provable.

4.2. DECIDABILITY 51

But this constraint is the same as ([[t1 + t2]] − [[t′1 + t′2]] ≤ 0), that is, [[t1 + t2 ≤ t′1 + t′2]].
The other direction is the same.

Case:

∆ ` t1 = t3 true ∆ ` t3 = t2 true

∆ ` t1 = t2 true

I will show that [[t1 ≤ t2]] is semantically provable; the other direction is similar.
By the induction hypothesis, there exist semantic proofs of [[t1 ≤ t3]] and [[t3 ≤ t2]], that is, ([[t1]] −
[[t3]] ≤ 0) and ([[t3]] − [[t2]] ≤ 0).
By Lemma 4.12, there is a semantic proof of ([[t1]]− [[t3]]+ [[t3]]− [[t2]] ≤ 0), that is, of ([[t1]]− [[t2]] ≤ 0),
which in turn is the same as [[t1 ≤ t2]].

Case:
∆ ` t1 ≤ t3 true ∆ ` t3 ≤ t2 true

∆ ` t1 ≤ t2 true

By the induction hypothesis, there exist semantic proofs of [[t1 ≤ t3]] and [[t3 ≤ t2]], that is, of
([[t1]] − [[t3]] ≤ 0) and ([[t3]] − [[t2]] ≤ 0).
By Lemma 4.12, ([[t1]] − [[t3]] + [[t3]] − [[t2]] ≤ 0) is semantically provable.
But [[t1]] − [[t3]] + [[t3]] − [[t2]] = [[t1]] − [[t2]], so I have found a semantic proof of [[t1 ≤ t2]].

Case:
(m ≤ n)

∆ ` m ≤ n true

Note that [[m ≤ n]] = (m−n ≤ 0). Since m ≤ n, (n−m) is a nonnegative linear polynomial; hence
∆ |= (∅, n − m) : [[m ≤ n]].

Case:
∆ ` t1 ≤ t′1 true ∆ ` t2 ≤ t′2 true

∆ ` t1 + t2 ≤ t′1 + t′2 true

By the induction hypothesis, [[t1 ≤ t′1]] and [[t2 ≤ t′2]] are semantically provable.
That is, there exist semantic proofs of ([[t1]] − [[t′1]] ≤ 0) and ([[t2]] − [[t′2]] ≤ 0).
By Lemma 4.12, ([[t1]] − [[t′1]] + [[t2]] − [[t′2]] ≤ 0) is semantically provable.
But this constraint is the same as ([[t1 + t2]] − [[t′1 + t′2]] ≤ 0), that is, [[t1 + t2 ≤ t′1 + t′2]].

Case:
∆ ` t + t1 ≤ t + t2 true

∆ ` t1 ≤ t2 true

By the induction hypothesis, [[t + t1 ≤ t + t2]] is semantically provable.
By the definitions of the interpretation functions [[·]] for terms and formulas,

[[t + t1 ≤ t + t2]] = ([[t]] + [[t1]] − [[t]] − [[t2]] ≤ 0) = ([[t1]] − [[t2]] ≤ 0) = [[t1 ≤ t2]])

Thus [[t1 ≤ t2]] is semantically provable.

Case:
∆ ` t : N

∆ ` 0 ≤ t true

Observe that [[0 ≤ t]] = (−[[t]] ≤ 0); thus ∆ |= (∅, [[t]]) : [[0 ≤ t]].

End of Proof.

52 CHAPTER 4. THE TALT-R CONSTRAINT LOGIC

4.2.5 The Decidability Theorem

The interpretation of terms as polynomials effectively gives a representation of terms that iden-
tifies those that differ only by rearrangement of terms and computation with numerals. The in-
terpretation of formulas as polynomial constraints identifies those formulas that differ only by
rearrangement of terms, computation with numerals, and cancellation. The only proof rules not
covered are the hypothesis rule, the rules for adding equations or inequalities together, and the
one stating that any term is greater than or equal to zero; thus the semantic content of a proof
essentially consists of a collection of hypotheses to be added together, along with an axiomatically
true formula of the form 0 ≤ t. Intuitively speaking, therefore, I have reduced the question of
whether a formula is provable or not to a question of whether a certain polynomial is a linear
combination of certain others or not. This latter question is clearly decidable.

Theorem 4.1 (Decidability) The (derivability of the) judgment ∆ ` ϕ true is decidable.

Proof:

If ϕ = (t = u), then it suffices to decide whether both ∆ ` t ≤ u true and ∆ ` u ≤ t true. If both
of these hold, then so does ∆ ` ϕ true; if either does not hold, then neither does the judgment of
interest.

If ϕ = (t ≤ u), then suppose [[t ≤ u]] = (P ≤ 0); by Lemmas 4.11 and 4.13 it suffices to decide
whether there exists a semantic proof M such that ∆ |= M : P ≤ 0. Suppose [[∆]] = {H1 ≤
0, . . . ,Hn ≤ 0}; then I claim that (P ≤ 0) is semantically provable iff there are natural numbers
x1, . . . , xn satisfying the system of constraints:

H1(1)x1 + · · · + Hn(1)xn ≥ P (1)
H1(a1)x1 + · · · + Hn(a1)xn ≥ P (a1)

...
H1(am)x1 + · · · + Hn(am)xn ≥ P (am)

where

{a1, . . . , am} = dom(P) ∪
n⋃

i=1

dom(Hi)

(i.e., a1, . . . , am are all the variables appearing in the judgment to be decided). Therefore, to decide
whether ∆ ` t ≤ u true is provable it suffices to generate this system of constraints and solve
it using an algorithm for Integer Programming. Generating the constraints poses no difficulty,
since the operations on polynomials required to extract P from t and u, and the Hi’s from ∆, are
certainly computable.

Now I must prove both directions of my claim. First, suppose that M = (A,F) is a semantic
proof of (P ≤ 0). Then each polynomial R in the multiset A is equal to Hi for some i. So, for
1 ≤ i ≤ n, let xi be the multiplicity of Hi in A; then

P =
∑

M =
∑

A − F = x1H1 + · · · + xnHn − F

Since F is nonnegative, x1, . . . , xn satisfy the constraints above.

Now, suppose that x1, . . . , xn satisfy the constraints. To produce a semantic proof of P , let
A be the submultiset of {H1, . . . ,Hn} containing each Hi with multiplicity xi and define F (x) =
(
∑

A)(x) − P (x) for every x ∈ Var ∪ {1}. Then clearly
∑

A − F = P , so it remains only to show

4.3. INCOMPLETENESS 53

that F is nonnegative. Clearly F (z) = 0 for any z ∈ Var \ {a1, . . . , am}. On the other hand, if
z ∈ {1, a1, . . . , am} then one of the constraints gives (

∑
A)(z) ≥ P (z) and so F (z) ≥ 0. Thus

M = (A,F) is a semantic proof and ∆ ` M : [[t ≤ u]].

End of Proof.

4.2.6 Implementation

I have not implemented this Integer Programming-based decision procedure in the TALT-R as-
sembler. Instead, I implemented a much simpler algorithm that decides a proper subset of the
derivable judgments; this subset is sufficiently large that any program generated by my compiler
will be accepted by the algorithm.

The algorithm, which I call depth-limited semantic proof search, is based on a size measure for
semantic proofs that I call depth. Roughly speaking, the depth of a semantic proof corresponds to
the number of uses of the hypothesis rule in a syntactic derivation.

Definition 4.11 (Depth) If M = (A,F) is a semantic proof, then the depth of M is the cardinality of
the multiset A. If the constraint P ≤ 0 is semantically provable, then the depth of (P ≤ 0) (relative to a
context ∆) is the minimum depth of any semantic proof of P (in ∆); otherwise we say (P ≤ 0) has depth
∞. The depth of an inequality formula t ≤ u is the depth of [[t ≤ u]]; the depth of an equality formula t = u
is the maximum of the depth of t ≤ u and the depth of u ≤ t.

Clearly, formulas of any depth are provable; thus for any d,

DLPd = {(∆, ϕ) | ϕ has depth at most d relative to ∆} ⊆ {(∆, ϕ) | ∆ ` ϕ true}.

The depth-limited semantic proof search algorithm with limit d decides the set DLPd: Given a con-
text ∆ and a formula ϕ = (t ≤ u), it enumerates all possible submultisets of [[∆]] of cardinal-
ity d or smaller (there are finitely many). For each such multiset A, it computes the difference
F =

∑
A − P . If F is nonnegative, then ∆ |= (A,F) : [[ϕ]] and so the depth of ϕ is at most |A|,

which is at most d; thus (∆, ϕ) ∈ DLPd and the algorithm returns success. If no A makes
∑

A−P
nonnegative, the algorithm returns failure.

When I discuss type preservation for my translation into TALT-R, I will claim that there is
a d such that the typing of the translation’s output never depends on the truth of any formula
with depth greater than d. This implies that depth-limited semantic proof search with limit d is
“complete enough” in the sense I described at the start of this chapter.

4.3 Incompleteness

Since the rules of the TALT-R constraint logic do not include a schema for induction over natural
numbers, it comes as no suprise that they are not complete in the sense that not every entailment
∆ ` ϕ true that is valid over the natural numbers can be derived using them. In fact, all of the rules
of the constraint theory remain sound if the variables are allowed to range over all nonnegative
rationals; thus any entailment that is valid over N but not over Q≥0 cannot possibly be derivable.
For instance, (a + a ≤ 3) 6` a ≤ 1 true because this judgment is not valid if a is allowed to take on
non-integral values.

The next natural question is whether the TALT-R constraint logic can derive all formulas that
are valid over the nonnegative rationals. The answer is no: for a counterexample, observe that
(a + a ≤ 4) 6` a ≤ 2 true. An extension of the TALT-R constraint logic capable of deriving this
judgment and others like it is described in Appendix C.

54 CHAPTER 4. THE TALT-R CONSTRAINT LOGIC

4.4 Chapter Summary

The clock reasoning in TALT-R, as well as the static semantics of guarded and singleton types,
depends on a constraint logic whose soundness must be provable in Twelf. I have isolated an
impoverished but useful theory of linear inequalities whose soundness is very straightforward,
and proven that it is decidable (although I have not found an efficient decision procedure) and
contains a convenient subset for which a simple decision procedure is easily designed.

Chapter 5

Lilt: A Low-Level Source Language

lilt \lilt\ (n) 1 : a spirited and usually cheerful song or tune 2 : a rhythmical swing,
flow, or cadence 3 : a springy buoyant movement [44]

So that I can formalize the process of resource-bound certifying compilation, this chapter
presents a low-level typed language that will serve as the source of a translation into MiniTALT-R.
I call this language Lilt,1 and it serves as the intermediate language in a certifying compiler for
a subset of the high-level language Popcorn. (Popcorn is best known as the source language de-
signed for compilation into TALx86 [45].) The back-end of my compiler generates EXTALT-R from
Lilt using a translation based on the Lilt-to-MiniTALT-R translation in Chapter 7.

Lilt is designed to be completely ignorant of timing issues, but it does have a number of un-
usual characteristics motivated by its intended use in a compiler for Popcorn. Specifically, func-
tions in a Popcorn program usually declare mutable local variables which they read from and
assign to frequently. Furthermore, Popcorn functions often contain loops and sometimes contain
exception handling constructs, and it is essential that the state of the local variables be threaded
through all this control flow with a minimum of work. The best implementation strategy seems to
be the one (presumably) used in the majority of compilers for C-like languages, and described in
many if not most traditional compiler design texts (e.g., [48]): Each dynamic instance of a function
allocates (at most) one stack frame in which to store its local variables, and register allocation is
performed on (at least) an entire function at a time to minimize the amount of “shuffling” that
must be performed.2 Unfortunately, the decision to adopt this compilation model complicates the
intermediate language, since it introduces a distinction between local (intraprocedural) and non-
local (interprocedural) transfers of control, and requires an intermediate language that can deal
with mutable local variables.

5.1 Syntax

The syntax of Lilt is given in Figure 5.1. Lilt has three different syntactic classes of identifiers at the
term level: function names (ranged over by f), which have global scope and stand for functions;

1The name was chosen because it is a near-acronym for “Low-level Intermediate Language,” rhymes with TILT, is
related to music (like most ConCert project terminology) and has implications of rhythm and liveliness, which is sort
of like liveness.

2The parenthetical interjections acknowledge the possibilities of eliding the stack frame on an architecture with
enough registers, and of performing interprocedural register allocation, respectively. However, our target architecture
(IA-32) has few registers and we do not plan to implement any interprocedural optimizations, so we will not discuss
these matters any further.

55

56 CHAPTER 5. LILT: A LOW-LEVEL SOURCE LANGUAGE

Operands v ::= s | n | tt | ff | ? | f | q@v
Coercions q ::= id | [c1, . . . , cn] | rollτ | unroll | pack[τ, c1, . . . , cn]
Small Expressions r ::= v | op(v1, . . . , vn) | πiv | injτ (i, v) | outj(v)

| 〈v1, . . . , vn〉 | {v1, . . . , vn}
Conditions cond ::= v1 = v2 | v1 < v2

Expressions e ::= return v | raise v | goto `[c1, . . . , cn]
| let s = r in e
| let s = v(v1, . . . , vm) in e
| let s = sub(v, v1) in e | let sub(v1, v2) := v3 in e
| let πi v := v1 in e
| let (α1, . . . , αn, s) = unpack v in e
| pushhandler `[c1, . . . , cn] in e | pophandler in e
| if cond then e1 else e2

| case v of inj(i, s) ⇒ e1 else e2

Functions F ::= func(∆; Γ; τ).(enter(s1, . . . , sn).e, `1 = B1, . . . , `m = Bm)
Blocks B ::= block(∆;Ξ; Γ).e | hndl(∆;Ξ; Γ; s).e
Programs P ::= f1 = F1, . . . , fn = Fn

Kinds k ::= T | k1 → k2

Type Constructors c, τ ::= α | int | bool | unit | 〈τ1, . . . , τk〉 | [i1:τ1, . . . , in:τn] | ns
| τ array | (τ1, . . . , τm) → τ | µα.τ
| ∀α1:k1, . . . , αn:kn.τ | ∃α1:k1, . . . , αn:kn.τ | λα:k.c | c1 c2

Type Contexts ∆ ::= · | ∆, α:k
Block Types γ ::= lbl(∆;Ξ; Γ) | hnd(∆;Ξ; Γ)
Local Contexts Γ ::= [s1:τ1, . . . , sn:τn]
Exception Stack Types Ξ ::= · | Ξ,Γ
Label Contexts Λ ::= `1:γ1, . . . , `n:γn

Function Contexts Φ ::= f1:τ1, . . . , fn:τn

Figure 5.1: Lilt Syntax

5.2. STATIC SEMANTICS 57

labels (ranged over by `), which stand for code blocks within a function and are meaningful only
inside that function, and local variable names (ranged over by s), which also have function scope.
Local variables are used as the names of a function’s arguments as well as the names of local
storage locations allocated by a function.

A Lilt program is a sequence of mutually recursive function definitions, and the body of each
function consists of one or more blocks. The first block in each function is a special entry block
of the form enter(s1, . . . , sn).e, which is made up of a declaration of the function’s local variables
and the expression that will be evaluated when the function is called. Each of the remaining zero
or more blocks in the function body is either an ordinary block (block(∆;Ξ; Γ).e) or an exception
handler (hndl(∆;Ξ; Γ; s).e). Corresponding to these different kinds of code blocks are four differ-
ent control-transfer expression forms, namely function call, function return, unconditional jump
and raise.

If vf is a function value, the function call expression let s = vf (~v) in e causes control to
be transferred to vf ’s entry block, binding the function’s formal parameters to the values ~v. If
the function returns a value, that value is copied into the local variable s and the expression e is
evaluated. The expression return v immediately exits the current function and returns the value
v to the calling function. The jump expression goto `[~c] performs a one-way transfer of control to
the block named `, passing it the type arguments ~c and implicitly passing along the current values
of the current function’s arguments and local variables.

The expression raise v is similar to return v except that v must be an exception value, and it
is passed not to the calling function but to the current exception handler, which may have been
installed by any pending function including the current one. The handler has access to the current
values of the arguments and local variables of the function that installed it, and designates one
of these variables to receive the value v. The pushhandler and pophandler expression forms
manipulate the stack of pending exception handlers, but cannot remove any handlers installed
before the call to the current function. A return expression implicitly pops all exception handlers
installed by the current function, restoring the handler that was current when the function was
called.

The type system of Lilt is essentially that of the higher-order polymorphic λ-calculus Fω [27]
augmented with several useful types for programming. The language includes the base types
int , bool and unit as well as the familiar n-ary product types (〈τ1, . . . , τn〉), array types (τ array)
and function types ((τ1, . . . , τn) → τ). The variant type [i1:τ1, . . . , in:τn] is essentially similar to
the more familiar n-ary sum type (τ1 + · · · + τn) found in other calculi; the labels i1, . . . , in are
distinct integers, and serve to identify the summands. (They correspond directly to the “tag”
words used by the implementation.) We have chosen to use labeled variant types rather than
unlabeled sum types in Lilt because they admit a very straightforward translation into TALT. The
Lilt type system also includes recursive types (µα.τ), and universal and existential quantification
(∀α1:k1, . . . , αn:kn.τ , ∃α1:k1, . . . , αn:kn.τ). Finally, higher-order type constructors may be formed
by abstraction (λα:k.c) and applied in the usual way (c1 c2).

5.2 Static Semantics

The judgment forms of the Lilt type system are listed in Table 5.1. The complete set of rules
defining these judgments may be found in Appendix D; I will discuss only the more unusual
aspects of the type system in this section.

The central typing judgment in Lilt is the one for expressions. The judgment Φ;∆;Λ;Ξ; Γ; τ ` e
states that e is a well-formed expression, where:

58 CHAPTER 5. LILT: A LOW-LEVEL SOURCE LANGUAGE

Judgment Meaning

∆ ` c : k c has kind k
∆ ` c1 = c2 : k c1 and c2 are equivalent at kind k
∆ ` Γ Γ is well-formed
∆ ` Ξ Ξ is well-formed

∆ ` q : τ1 ⇒ τ2 q coerces from τ1 to τ2

Φ;∆;Γ ` r : τ r has type τ
Φ;∆;Γ ` cond cond cond is a well-formed condition
Φ;∆;Λ;Ξ; Γ; τ ` e e is well-formed
Φ;∆;Λ; τ ` B : γ B is a block of type γ
Φ ` F : τ F is a function of type τ
` P P is a well-formed program

∆ ` τ1 ≤ τ2 τ1 is a subtype of τ2

∆ ` Γ1 ≤ Γ2 Γ1 is a subtype of Γ2

∆ ` Ξ1 ≤ Ξ2 Ξ1 is a subtype of Ξ2

∆ ` Ξ handles Γ (see discussion of raise)

Table 5.1: Lilt typing judgment forms

• Φ is a function context, which assigns types to the function symbols defined in the program.

• ∆ is a type context, which assigns kinds to constructor variables. The contents of ∆ will be
the type parameters of the current function and those of the current block, plus any addi-
tional variables introduced by unpack expressions.

• Λ assigns types to the block labels in the current function.

• Ξ describes the pending exception handlers, if any, that have been installed by the current
function.

• Γ is a local context, which assigns types to the local variable names that may appear in e.

• τ is the return type of the current function.

If this judgment holds, then the expression e performs zero or more primitive operations and then
does one of three things: It may return a value of type τ from the current function, it may jump to
one of the labels declared in Λ, or it may raise an exception. The typing rule for return expressions
states that returning a value of the appropriate type is always permitted:

Φ;∆;Γ ` v : τ

Φ;∆;Λ;Ξ; Γ; τ ` return v

Jumping to a label is allowed provided the label identifies an ordinary block (as opposed to an
exception handler) that can accept the current state of the local storage and exception stack. A
block may require some type arguments in addition to those of the enclosing function; the goto

expression must provide constructors of the appropriate kinds:

(Λ(`) = lbl(α1:k1, . . . , αn:kn; Ξ′; Γ′))
∆ ` ci : ki ∆ ` Γ ≤ Γ′[~c/~α] ∆ ` Ξ ≤ Ξ′[~c/~α]

Φ;∆;Λ;Ξ; Γ; τ ` goto `[c1, . . . , cn]

5.2. STATIC SEMANTICS 59

Installing an exception handler has similar typing requirements to jumping: the constructor ar-
guments must be properly kinded and the current stack of exception handlers must be consistent
with the new handler’s expectations. However, it is not necessary that the local context match the
one expected by the handler at the point the handler is installed; this requirement is deferred to
the point at which an exception is raised. The rule for pushing an exception handler is as follows:

(Λ(`) = hnd(α1:k1, . . . , αn:kn; Ξ′; Γ′))
∆ ` ci : ki ∆ ` Ξ ≤ Ξ′[~c/~α] Φ;∆;Λ; (Ξ,Γ′[~c/~α]); Γ; τ ` e

Φ;∆;Λ;Ξ; Γ; τ ` pushhandler `[c1, . . . , cn] in e

The typing rule for raise expressions requires that the local context match the one expected by
the current handler. This is captured by the premise ∆ ` Ξ handles Γ:

Φ;∆;Γ ` v : τexn ∆ ` Ξ handles Γ

Φ;∆;Λ;Ξ; Γ; τ ` raise v

The auxiliary judgment ∆ ` Ξ handles Γ (defined in Appendix D) holds if Ξ is empty, meaning
that the current exception handler was not locally installed (in which case the contents of Γ are
irrelevant because the current locals will be discarded), or if Ξ is nonempty and the local context
Γ matches the expectations of the current locally installed handler as given by Ξ. Importantly,
raise v is not the only form of expression that may raise an exception. Array subscript operations
may do so (if the index is out of bounds), and so may function calls (if the callee raises an exception
it does not handle itself); therefore the typing rules for these forms of expressions must also have
premises of the form ∆ ` Ξ handles Γ to ensure that the state of the local variables is consistent
with what the current handler requires.

Most of Lilt’s operations are performed by a sort of let-binding expression: the expression
let s = r in e evaluates r, stores the result in location s, and continues with e. Its typing rule
makes use of an auxiliary judgment to determine the type of r:

Φ;∆;Γ ` r : τ ′ Φ;∆;Λ;Ξ; Γ[s 7→ τ ′]; τ ` e

Φ;∆;Λ;Ξ; Γ; τ ` let s = r in e

The terms ranged over by r (the so-called “small expressions”) are generally single primitive op-
erations performed on syntactic values; they involve no control flow, cannot raise exceptions, and
have no side effects (except possibly allocation, which may fail and terminate the program). Of
these operations, arithmetic, tuple allocation and projection are relatively standard and have the
expected typing rules. Slightly unusual features of Lilt at this level are the treatment of labeled
variant types (a generalization of disjoint union or sum types), and the use of coercions.

Variants A value of variant type is created as usual by the inj operation, which takes a tag
integer j and a value v, and produces a value of any variant type containing a j variant whose
type is that of v:

∆ ` τ = [. . . , j:τj , . . .]
Φ;∆; Γ ` v : τj

Φ;∆;Γ ` injτ (j, v) : τ

Given a value of variant type, accessing its contents is a two-stage process: the case expression
form “narrows” the type until it has only one variant, and then the outj operation can extract the

60 CHAPTER 5. LILT: A LOW-LEVEL SOURCE LANGUAGE

carried value:

Φ;∆;Γ ` v : [j:τ , i:τ ′, j:τ
′
]

Φ;∆;Λ;Ξ; Γ[s 7→ [i:τ ′]]; τ ` e1 Φ;∆;Λ;Ξ; Γ[s 7→ [j:τ , j:τ
′
]]; τ ` e2

Φ;∆;Λ;Ξ; Γ; τ ` case v of inj(i, s) ⇒ e1 else e2

Φ;∆;Γ ` v : [i : τ]

Φ;∆; Γ ` outj(v) : τ

The case expression typed in this rule examines the value v, which has a variant type, compares
the tag of v to the number i and then continues with either e1 or e2, after placing a version of v
with an appropriately refined type in the location s. (Here it is important that all the tags in the
sum type are syntactically required to be distinct.) The typing of e1 assumes that s has the unary
variant type corresponding to the i branch of the type of v; the typing of e2 assumes s has a variant
type consisting of all the remaining branches of v’s original type. The small expression outj(v)
assumes v has a unary variant type, and retrieves the value it carries.

Coercions The operations of ∀-elimination, ∃-introduction, and introduction and elimination of
recursive types are intended to have the special property that, when applied to values, they require
no run-time work to compute. It is reasonably common practice to simply include expression
forms with this property among the syntactic values (or in Lilt, the operands) of the language.
This is what I have done, except that I group these four different forms of values into one, namely
the application of a coercion to a value (written q@v). From a typing point of view, coercions
behave a bit like functions; in particular, the rule for coercion application is just like the usual
function application rule:

Φ;∆;Γ ` v : τ2 ∆ ` q : τ2 ⇒ τ

Φ;∆;Γ ` q@v : τ

The typing rules for the coercions themselves are derived from the standard typing rules for the
constructs they replace. The ∀-elimination coercion, written [c1, . . . , cn], instantiates a value of a
∀-type:

∆ ` ci : ki for 1 ≤ i ≤ n

∆ ` [c1, . . . , cn] : ∀α1:k1, . . . , αn:kn.τ ⇒ τ [c1, . . . , cn/α1, . . . , αn]

The ∃-introduction coercion, written pack[τ, c1, . . . , cn], is similar:

∆ ` τ = ∃α1:k1, . . . , αn:kn.τ ′ : T ∆ ` ci : ki for 1 ≤ i ≤ n

∆ ` pack[τ, c1, . . . , cn] : τ ′[c1, . . . , cn/α1, . . . , αn] ⇒ τ

The roll and unroll coercions mediate between a recursive type and its unrolling:

∆ ` τ = µα.τ ′ : T

∆ ` rollτ : τ ′[τ/α] ⇒ τ

∆ ` µα.τ : T

∆ ` unroll : µα.τ ⇒ τ [µα.τ/α]

Roughly speaking, Lilt uses coercions for operations whose TALT equivalents are subtyping
rules rather than value forms or instructions (and which are therefore represented as coercions in
XTALT and EXTALT). This is not by accident, since the “operations” captured by subtyping rules
in TALT (in which subtyping is resolutely inclusive rather than coercive) clearly amount to the
identity.

5.3. LILT EXAMPLES 61

int rfib(int n) {
if (n < 2) return 1;
return rfib(n-1) + rfib(n-2);

}

rfib = func(·; [n:int]; int).(
enter(t1 , t2).

if n < 2 then

return 1
else

let n = −(n, 1) in
let t1 = rfib(n) in
let n = −(n, 1) in
let t2 = rfib(n) in
let t1 = +(t1 , t2) in
return t1)

Popcorn Lilt

Figure 5.2: Lilt Example: Recursive Fibonacci

int fib(int n) {
int a,b,c;
a = 1; b = 1;
while (n != 0) {

c = a + b;
a = b;
b = c;
n--;

}
return a;

}

fib = func(·; [n:int]; int).(
enter(a, b, c).

let a = 1 in

let b = 1 in

goto loop ,
loop = block(·; ·; [n:int , a:int , b:int , c:ns]).

if n = 0 then

return a
else

let c = +(a, b) in
let a = b in
let b = c in
let n = −(n, 1) in
goto loop)

Popcorn Lilt

Figure 5.3: Lilt Example: Iterative Fibonacci

62 CHAPTER 5. LILT: A LOW-LEVEL SOURCE LANGUAGE

union <a>list {
void nil;

* (a,<a>list) cons;
}

<a>list rev<a>(<a>list L) {
<a>list M = ˆ.nil ;
while (true) {

switch (L) {
case nil: return M;
case cons * (h,t):

M = ˆ.cons(ˆ(h,M));
L = t;

}
}
// (Dead code)
return M;

}

Define:
listF = λα:T.λβ:T. [0:unit, 1:〈α, β〉]
list = λα:T. µβ.listF α β
listS = λα:T. listF α (list α)

rev = func(α:T ; [L:list α]; list α).(
enter(M,h).

let M = inj
listS α(0, ?) in

let M = rolllist α@M in

goto loop ,
loop = block(·; ·; [L:list α,M :list α, h:ns]).

case unroll@L of inj(0, L) ⇒
return M

else

let L = outj(L) in
let h = π0(L) in
let h = 〈h,M〉 in
let M = inj

listS α(1, h) in
let M = rolllist α@M in

let L = π1 L in

goto loop)

Popcorn Lilt

Figure 5.4: Lilt Example: List Reversal

5.3 Lilt Examples

A very simple Lilt function, illustrating the use of local variables, is shown in Figure 5.2. On the
left side of the figure is a Popcorn (or C or Java) function that computes the nth Fibonacci number
using the obvious but inefficient recursive method; on the right is the approximate Lilt equivalent.
Note that the entry block of the Lilt function declares the two local variables t1 and t2 but does
not give types for them: at the start of the entry block, the local variables are uninitialized and so
they have type ns . Also note that as in C-like languages, a function is allowed to assign into its
arguments: the Lilt version of rfib destructively modifies its parameter n to compute the argument
of each recursive call.

A somewhat more interesting function, involving some local control flow, is the function fib

shown in Figure 5.3, which computes Fibonacci numbers using a linear-time loop instead of recur-
sion. Again, note that the three local variables have type ns when they are first allocated. When
the block called loop is invoked at the end of the entry block, a and b have been initialized, but
c has not; therefore loop’s block header specifies the type int for a and for b (as well as for the
argument n), but expects that c still has type ns . By the time loop invokes itself (in the last line of
code), c has been assigned an integer; the jump is still well-typed because int is a subtype of ns .

A function with similar control-flow structure but more complex typing is the polymorphic
list reversal function shown in Figure 5.4. This example uses the polymorphic type constructor

5.3. LILT EXAMPLES 63

list , defined as follows:
list = λα:T. µβ. [0 : unit, 1 : 〈α, β〉]

(Note that the type list τ is recursive; this recursion is not marked by any special syntax in Popcorn,
but must be written with a µ-type in Lilt.) For convenience, the constructor listS is also defined
in the figure; listS τ is simply the unrolling of the recursive type list τ . At the beginning of the
function rev , the variable M is initialized with an empty list; this is a two-stage process in Lilt,
consisting of an injection (to produce a value of type listS α) and an application of the coercion
rolllist α to create the list itself. The block named loop examines the list currently stored in the
argument location L by unrolling it and performing a case analysis. In the case where the tag is
0—that is, L is the empty list—the current value of M is returned from the function. In the case
where the tag is not 0—i.e., the tag is 1 meaning L is a cons—the components of L are extracted by
outjection and projection, the head of L is added to the front of M , the tail is stored back into L,
and the loop is evaluated again.

64 CHAPTER 5. LILT: A LOW-LEVEL SOURCE LANGUAGE

Chapter 6

Yield Placement and Polling Techniques

The major novel element in compiling Lilt to TALT-R is, naturally, the placement of yield instruc-
tions so that the typing conditions regarding the virtual clock are satisfied. As mentioned briefly
in Chapter 1, one of the key claims in this thesis is that a requirement that programs be certifiably
responsive need not place any burden on the typical application programmer. To support this
claim, I limit my discussion in this chapter and elsewhere to techniques for placing yields in a
program with no timing-related input from the programmer at all. I shall comment further on this
assumption in Chapter 9.

One possible strategy is to place a yield at the beginning of every basic block in the program
and every Y instructions thereafter; this idea, while sound, is not very appealing because yielding
is likely to be very expensive. (One can easily imagine a multiprocessing scenario where every
yield allows an unbounded number of other processes to execute for up to Y instructions each.) I
will describe a number of simple yield placement heuristics in this chapter, intended to increase
the actual time between yields executed by programs as much as possible (while keeping it less
than Y). These direct placement strategies, however, all fall short of optimal performance if Y is
large. Later on, I will explain how the singleton and guarded types of TALT-R may be used to
implement dynamic checks that avoid the limitations of direct yield placement strategies, greatly
reducing the number of actual yields performed. However, even these checks are not free, so it
is to one’s advantage to minimize the number of them that are needed. Placement of checkpoints
is essentially the same problem as placement of yield instructions, but the types involved are
more complicated. Therefore, for the sake of clarity, I will structure the discussion as follows: first,
I will explain some strategies for placing yield instructions with no dynamic checks; then, I will
explain how dynamic checking is possible. The translation of Lilt to MiniTALT-R I give later will
combine these ideas, using the placement strategies I discuss here to place dynamic checkpoints
rather than actual yield instructions.

Yield placement in straight-line code is not interesting: one simply ensures that there are no
more than Y non-yielding instructions in between any two consecutive yields. The challenge of
yield placement is focused around instructions that perform transfers of control. If the virtual
clock at the point of a jump is less than the value expected by the code being jumped to, a yield is
necessary before the jump; on the other hand, if the virtual clock before a jump is greater than re-
quired, the next yield will happen sooner than necessary. There are essentially four different kinds
of jumps in Lilt programs (function call, return, goto and raise), which subdivide yield place-
ment in to three subproblems. Local, or intraprocedural placement is the problem of ensuring that
goto expressions obey the virtual clock rules; global, or interprocedural placement is concerned
with function calls and returns; and finally exceptional placement deals with the timing properties

65

66 CHAPTER 6. YIELD PLACEMENT AND POLLING TECHNIQUES

Figure 6.1: A Flow Graph With a Join

of exception handling. I will discuss each of these subproblems of yield placement in turn.

6.1 Local Placement

The problem of local, or intraprocedural, yield placement is concerned with determining the initial
virtual clock assumptions for all of the ordinary blocks in a Lilt function (that is, those that are not
exception handlers and are not the entry block), and the placement of yield points consistent with
these assumptions. This task is simplified by the fact that the targets of all local jumps (that is,
goto expressions) are known, so an accurate flow graph for the ordinary blocks of the function
can be built. Even so, optimal yield placement is tricky. I will describe three simple heuristics here,
one of which I have implemented in my prototype compiler; after I discuss dynamic checks I will
be able to formulate a fourth.

Yield-on-Jump The most naı̈ve local yield placement strategy, but the simplest to implement, is
to assume that every local jump will involve a yield. This can be accomplished either by assuming
a virtual clock of zero at the start of every block, or by assuming a virtual clock of Y −1 at the start
of every block. In the former case, the first instruction in every block must be a yield; in the latter,
the last instruction before every jump must be a yield.

Because these yield-on-jump strategies treat every block and every jump the same, making no
use of one’s static knowledge of each jump’s target, it is easy to see that they place more yields
than necessary. Figure 6.1, for example, shows a flow graph corresoponding to two Lilt blocks and
containing one join point. (In Lilt, the extended basic block consisting of basic blocks A1, A2 and
A3 is thought of as a single block.) If all of these basic blocks are short, and none of them contains
any function calls (so that global yield placement does not affect the example), then it may be
unnecessary to yield at the start of block B. In general, yield-on-jump appears to be badly behaved
for acyclic Lilt functions that contain several blocks. The next two candidate strategies attempt to
do better on acyclic functions by propagating approximate timing information between blocks.

Forward Propagation For the other two local yield placement heuristics I will consider, it is nec-
essary to distinguish between forward and backward jumps. Specifically, I assume a total ordering

6.1. LOCAL PLACEMENT 67

on the blocks in a function; a jump whose target is a later block than the one where the jump
appears is called a forward jump, and one whose target is an earlier block, or the very one in
which the jump occurs, is called a backward jump. Note that if the flow graph of a function is
acyclic, then it is possible to arrange the ordering such that all jumps are forward; in a function
containing loops, every loop necessarily contains at least one backward jump. Loops are a source
of difficulty for local yield placement, since my system (probably) lacks the expressive power to
avoid yielding at least once per iteration, so I expect that my heuristics will give the best results
when the ordering on blocks minimizes the number of backward jumps. Rather than attempt to
find such an ordering, however, I will simply use the order in which the blocks appear in the Lilt
representation of the function.1

The first nontrivial local yield placement heuristic is based on the operation of propagating
clock information forward through a block as code for the block is generated. The process is
basically intuitive: starting with an initial assumption about the virtual clock at the start of the
block, generate the instructions for the block, tracking the decrements to the virtual clock with
each instruction. (The global yield placement strategy will determine the effect function calls have
on the clock.) If the clock ever reaches zero (or becomes inconveniently small for any operation
that must be compiled), insert a yield and reset it to Y . At each leaf of the extended basic block,
one is faced with either a return, a raise or a goto and a certain predicted value on the clock. In
each of these cases it may or may not be necessary to yield before the transfer of control. In the
case of return and raise, the decision is made based on the global and exceptional placement
strategies in use, respectively. It therefore remains only to show how to handle goto.

The forward-propagation method generates code for a function as follows. Compile the blocks
in order, starting with the entry block of the function. The initial condition of the entry block is
determined by the global placement strategy; the initial condition of a handler block is determined
by the exceptional placement strategy. For ordinary blocks, note that by the time we compile a
block (labeled by) `, all forward jumps to ` have already been compiled. Therefore, these blocks
may be handled using three rules:

• Do not yield before a forward jump, unless a yield is necessary to accomodate the jmp in-
struction itself.

• The initial condition for each ordinary block ` is the minimum virtual clock value seen at
any forward jump to `, adjusted to account for the jump instruction.

• For backward jumps, the target block has already been compiled; determine whether to yield
before jumping based on the target block’s initial condition.

This approach has the advantage that, although every loop needs at least one yield, there
may not need to be a yield at every backward edge if the initial assumption at the top of the
loop is small enough. It also may be more algorithmically convenient to use this heuristic, which
processes blocks in a forward direction, than the next one in which blocks are scanned backwards.

Backward Propagation The forward propagation method started with an initial assumption
about each block and determined what the block could guarantee at each leaf. It is also possible
to place yields by starting with the requirement at each leaf of a block, and propagating backward
to determine the requirement at the block’s beginning. To do this, the instructions for each basic

1The problem of finding an optimal ordering is NP-hard (stated without proof by Manber [43], p. 429).

68 CHAPTER 6. YIELD PLACEMENT AND POLLING TECHNIQUES

block must be generated in reverse order, incrementing the requirement (rather than decrement-
ing an assumption) with each instruction until the value reaches Y . When this happens, a yield
is inserted and the requirement is reset to zero. Conditional expressions within extended basic
blocks require conservative approximation: the requirement before an if or a case instruction is
computed based on the maximum of the requirements of the branches.

To generate code for a function using the backward propagation method, compile the blocks
in reverse order. For each leaf of each block, determine the final requirement: for return and raise

this comes from the global and exceptional placement policies, as before. For jumps, there are two
cases.

• If the jump is forward, then its target has already been compiled. The final requirement of
the current basic block is then the target block’s initial requirement, plus the cost of the jmp
instruction. If this is greater than Y , insert a yield before the jump.

• If the jump is backward, then insert a yield and assume a final requirement of zero.

Since the initial conditions of the exception handler blocks and of the function’s entry block are
not determined by local placement, it may be necessary to insert a yield at the beginnings of
these blocks if the computed initial requirement exceeds this initial condition.

The backward propagation method has the advantage that it does not require tracking any ad-
ditional information, whereas for forward propagation one has to remember the minimum clock
value associated with each forward jump until the target block is compiled. However, the assump-
tion that every return has the same requirement does not mesh well with the global placement
strategy I developed for my compiler. I therefore used forward rather than backward propagation
for local yield placement.

6.2 Global Placement with Call-Return Yielding

Global, or interprocedural, yield placement differs from local placement in that function pointers
are first-class values in Lilt, and therefore for some call sites it may not be statically obvious which
function is being called. Thus, finding a guaranteed optimal placement of yield points would
seem to require interprocedural control flow analysis. Fortunately, I know of at least two global
yield placement strategies that do not require this complexity: these methods treat all functions
and all function call sites equally, avoiding the need to match up function calls with their targets. I
will describe these two strategies, which I call call-return yielding and Feeley yielding, before moving
on to discuss yield placement for the exception handling features of Lilt.

It is possible to devise a global placement heuristic that relies on only a small portion of the
TALT-R type system. First, note that the inclusion of a term for ck in the register file type allows
one to specify the time on the virtual clock at the start and end of a function, similarly to TALres
[18]. For instance, the type

∀ρ:TD. {eax :B4, esp :({eax :B4, esp :ρ, ck :k2} → 0) × ρ, ck :k1} → 0

describes a function that takes an integer argument (in eax) and returns an integer (also in eax);
further, this function may be called whenever there is at least k1 + 1 on the virtual clock and is
guaranteed to return with at least k2 remaining. Unlike in TALres, however, this function may be
called at any time (assuming that 0 ≤ k1 < Y): if the value of the virtual clock at the desired call
site is not known to be at least k1 + 1, the caller simply yields before making the call, resetting

6.3. GLOBAL PLACEMENT WITH FEELEY YIELDING 69

the virtual clock to Y . Similarly, if k2 is not enough time for the caller to complete its own work,
it has only to yield after the function returns. Furthermore, by similar arguments (and with the
added assumption that 0 ≤ k2 < Y), any function may be made to satisfy these timing prop-
erties by proper local yield placement (which, as discussed above, may include inserting yield
instructions at the function’s beginning and end).

As an interesting special case, consider setting k1 = k2 = 0 for every function in a program.
This forces the first instruction of each function’s body, and the instruction immediately following
each call instruction, to be a yield , so I call this scheme call-return yielding. (Choosing k1 =
k2 = Y −1 would have a similar effect, except that the yields would need to occur just before, rather
than just after, the jumps.) Call-return yielding is simple, but it is far from optimal if Y is large
compared to the running time of most functions (a reasonable assumption). If some functions are
very short compared to Y , it would be safe to perform several calls to these functions in succession
with no yields at all, but the call-return strategy incurs the cost of the yield operation at least twice
per call.

6.3 Global Placement with Feeley Yielding

It is possible to improve over call-return yielding by giving types to functions that more precisely
capture their timing behavior. For example, by analogy with TALres, we might write the type

∀a:N.∀ρ:TD. {eax :B4, esp :({eax :B4, esp :ρ, ck :a} → 0) × ρ, ck :k + a} → 0

to describe a function that takes time k. Quantifying over the amount of time remaining on return
expresses the fact that this function returns with all but k of its initial virtual clock remaining,
whatever that value happens to be. There is a problem, however: a function of this type cannot
yield! To see why, note that the function must execute its return instruction with a + 1 remaining
on the virtual clock; but as far as the function knows, a could be any natural number. In particular,
a might be larger than Y —but Y is the largest clock value the function can ever ensure after it has
performed a yield instruction.

In reality, of course, a will never be larger than Y ; in fact, the initial clock value of k + a can
be at most Y − 1. Hence, if the function yields, the resulting clock value of Y is guaranteed to be
greater than or equal to a + 1, allowing the function to return. As discussed in Section 3.3.3, code
blocks in MiniTALT-R are permitted to depend on constraint assumptions; the addresses of such
blocks are given guarded types so that they cannot be executed unless the constraints are satisfied.
For example, if I decide the type of a function should be

∀a:N.∀ρ:TD. (k + a ≤ Y − 1) ⇒ {eax :B4, esp :({eax :B4, esp :ρ, ck :a} → 0) × ρ, ck :k + a} → 0

(the same type as the previous attempt at a function of cost k, except for the guard), then I add
the hypothesis (k + a ≤ Y − 1) true to the static context when typing the function’s code. This
hypothesis will then be available for use in proving formulas true within the function body. In
particular, in order for the function to return after a yield, I need to show that 1 + a ≤ Y . This is
especially easy when k ≥ 1, since (using the ordering axioms, monotonicity and transitivity) I can
reason as follows:

1 + a ≤ k + a ≤ Y − 1 ≤ Y

As a matter of fact, a function with the above type need not yield immediately before it returns,
because a stronger fact holds:

70 CHAPTER 6. YIELD PLACEMENT AND POLLING TECHNIQUES

Proposition 6.1 If 0 < k ≤ Y , then (a:N, (k + a ≤ Y − 1) true) ` 1 + a ≤ Y − k true.

Proof Sketch: Let ∆ be the context in the judgment to be derived. Using commutativity, the
addition axiom and reflexivity of ordering, ∆ ` k − 1 + (1 + a) ≤ k + a true. Using the addition
axiom and reflexivity of ordering, ∆ ` Y − 1 ≤ k − 1 + Y − k true. Invoking the hypothesis in ∆
and using transitivity twice, we get ∆ ` k − 1 + (1 + a) ≤ k − 1 + Y − k true. By the cancellation
rule, ∆ ` 1 + a ≤ Y − k as required.

Alternatively, observe that the formulas on the left and right of the turnstile in this judg-
ment have the same interpretation as polynomial constraints in the sense of Chapter 4, namely
(a + −Y + k + 1 ≤ 0). The soundness results of Chapter 4 imply that the judgment is derivable
(and is in DLP1).
End of Sketch.

A consequence of this proposition is that a function with the type given above may execute up
to k instructions between its last yield and its final ret . If j instructions have been executed since
the last yield and j ≤ k, then the virtual clock will read Y −j. It follows that Y −j ≥ Y −k ≥ 1+a,
making a return instruction well-typed.

As was the case in our discussion of call-return yielding, the function type just examined does
not bound the number of instructions executed by a function. It merely guarantees that any func-
tion of that type that takes more than k instructions will yield after executing at most k instruc-
tions, and that if such a function does yield, the last time it does so is at most k instructions before
it returns. By placing yields appropriately, any function can be made to obey these criteria.

Once again, an interesting special case arises if the value of k is fixed for all functions in the
program: in this case, the result is essentially the yield-placement strategy described by Feeley
[23]. Feeley, whose motivation was placing checkpoints in a program to detect interrupts, named
his strategy balanced polling. (Feeley also inspired my use of the term call-return yielding.) I choose
to refer to the yielding scheme I have just described as Feeley yielding, and I follow Feeley in
using the letter E to denote the fixed value we have chosen for k. The major advantage of Feeley
yielding is that functions that contain no loops or function calls and are shorter than E instructions
need not yield at all (whereas in call-return yielding every function must yield). Further, from the
caller’s point of view, any function appears to cost exactly E instructions. Thus if E is small
enough compared to Y , several function calls may occur in succession without the caller having
to yield in between.

A sample MiniTALT-R program fragment using the Feeley yielding strategy is shown in Fig-
ure 6.2. The function in the figure is a recursive function to compute Fibonacci numbers; it was
hand-coded in MiniTALT-R and is displayed in approximately Intel assembler syntax. Note that
the function has a “short path” corresponding to the case where the argument is less than or equal
to 1, and a “long path” that performs two recursive calls if it is not. Notice that the short path
does not need to yield (of course, this depends on E being chosen large enough). The long path
must yield before the first recursive call, and between the last call and the final return instruction.
This is typical of Feeley yielding, since any function might start out with as little as E on the clock,
but any callee requires at least E; similarly, no callee can be assumed to return with more than
Y − E − 1 on the clock, but the caller cannot return without at least Y − E. Notice, however, that
no yield is needed in between the two recursive calls (again assuming appropriate values for Y
and E).

6.3. GLOBAL PLACEMENT WITH FEELEY YIELDING 71

Note: this example assumes that E ≥ 4 and that Y ≥ 2E + 8.

fib:
// ck : E + a, (E + a ≤ Y − 1) true

cmp eax,1
ja L1 // n ≤ 1?
mov eax,1
// ck : E − 3 + a
ret // Return 1

L1:
// ck : E − 2 + a
push eax
sub eax,1
// ck : E − 4 + a
yield
// ck : Y
call fib // Compute fib(n-1)
// ck : Y − E − 1
pop ecx
push eax
mov eax,ecx
sub eax,2
// ck : Y − E − 5
call fib // Compute fib(n-2)
// ck : Y − 2E − 6
pop ecx
add eax,ecx // eax := fib(n-1)+fib(n-2)
// ck : Y − 2E − 8
yield
// ck : Y
ret // Return

Figure 6.2: Fibonacci using Feeley Yielding

72 CHAPTER 6. YIELD PLACEMENT AND POLLING TECHNIQUES

6.4 Exceptional Placement

A simple heuristic suffices for exceptional yield placement. In particular, since it is often unknown
at the site of a raise expression which handler is being invoked, the best solution is probably to
use a fixed initial assumption for all handler blocks and treat raise expressions accordingly. If
the initial condition of all exception handlers is taken to be H , then the requirement to generate a
raise is clearly H plus the cost of raising the exception (a few instructions).

There is room for clever improvement of this method: if a raise occurs in a context where the
current handler can be statically predicted, then it may be possible to avoid yielding before raising
the exception if the handler block is short; however, if a handler might be invoked in a context
where its identity is unknown, its initial requirement had better be at most H . It does not seem
likely that any serious advantage can be gained from this flexibility, so I have not investigated it.

6.5 Clocks and Polling

The yield placement strategies I have discussed are straightforward and easy to implement, but
they fall well short of the ideal goal of yielding exactly once for every Y other instructions ex-
ecuted. The reason is that, while the changes in the virtual clock can be precisely tracked over
straight-line code or tree-structured code, this precision cannot be carried across extended basic
block boundaries. Once the yield period Y is larger than the length of the longest extended basic
block in the program, one cannot expect that increasing it any more will continue to lower the
actual frequency with which the program will yield under these strategies.

One possible direction for further refinement is to enrich the static reasoning capabilities of
the TALT-R type system, so that it can capture more and more complex coding idioms, including
loops and recursion. This is the approach taken in LXres, where the equivalent of the static term
language includes sum, product and inductive kinds (inherited from LX [17]) and primitive recur-
sion in addition to basic arithmetic. Unfortunately, the potential benefits of this kind of system are
difficult to realize without significant contributions from the programmer. Fundamentally, any
improvement along the static reasoning axis involves two tightly coupled areas of simultaneous
development: that of more and more sophisticated program analyses to detect opportunities for
avoiding yields, and that of more and more expressive type systems to certify that the resulting
optimized programs are still safe.

An alternative to improving the static reasoning capabilities of the language is to rely to some
extent on dynamic mechanisms. That is, rather than implementing static analyses and compiler
passes that safely hoist yield instructions out of loops, one can generate programs that keep track
of time as they run and yield only when needed. Of course, some static reasoning is needed to
certify the correctness of the instruction counting, but it turns out that this is not difficult. In fact,
it is substantially easier than beefing up the type system’s logical power to the point of being able
to handle real programs.

Here is the idea: Let the program use one of the machine’s general-purpose registers to main-
tain a dynamic approximation of the number of instructions remaining until the next yielding
operation is due to occur. This approximation is maintained by periodically subtracting from the
register until it becomes zero (or inconveniently close to zero); when that happens, the program
must assume it has run out of time. It yields, resets the register and continues. I call this behavior
polling.

6.5. CLOCKS AND POLLING 73

6.5.1 Clocks

To implement polling, I reserve one general-purpose register for timing purposes. I will use the
name rck for this register and refer to it as the clock register (to distinguish it from the pseudoreg-
ister ck , the virtual clock). Note that although I give a descriptive name to the clock register for
the sake of presentation, there is nothing special about this register as far as the type system is
concerned. In fact, it is not strictly necessary to store the value of the clock register in a register at
all: it would also be reasonable to stack-allocate it and save the register for other uses. It is perhaps
most helpful to think of the name ‘rck ’ as referring to the role played by a certain register, rather
than to the register itself.

The purpose of the clock register is to store an approximation of the number of clock cycles
left before the next yield must happen. In particular, programs will maintain the invariant that the
value of rck is always less than or equal to the value of the virtual clock. A special significance is
attached to the difference between these two quantities (or the best available static approximation
thereof): this is the maximum number of nonyielding instructions the program can execute before
some action must be taken to maintain the invariant, either by yielding or by decreasing the value
of rck .

For simplicity, let us assume that updates to the clock register occur in a highly stereotyped
pattern: At points in the program where the virtual clock value cannot be proven to exceed the
value of rck , a certain fixed quantity, call it L, is subtracted from the register. If the new value is
negative, then the program assumes it has run out of time, performs a yield , and sets the register
to Y − L; if it is nonnegative, then the virtual clock now exceeds the register’s value by at least L
and execution can proceed. The technique will be most effective if L is close to the length of the
longest extended basic block in the program, since it is at extended basic block boundaries that
precision tends to be lost.

The effect of this technique on yield timing is
Y

Y

Y-L

Y-2L

Y-3L

Y-4L

virtual clock

clock register

time (instructions)

Figure 6.3: Yields Under a Polling Strategy

depicted in Figure 6.3. The graph on top shows
value of the virtual clock as a function of time dur-
ing the imagined execution of some program com-
piled using direct yield placement as described ear-
lier. The downward sloping portions of the graph
show the steady ticking of the virtual clock as non-
yielding instructions are executed; the virtual clock
value jumps back to Y each time the program yields.
Clearly, this program makes rather ineffective use
of the time it is given between yields. The graph
on the bottom shows the same program, modified
to use polling: each program point that performed
a yield in the upper graph now decrements the in-
struction counter instead, yielding only when that
value gets close to zero. Each decrement subtracts
L from the counter; since in this picture Y is ap-
proximately 4L, only every fourth clock check re-
sults in a yield. In practice, the ratio Y/L is much larger than four, giving an even more dramatic
decrease in yield frequency.

In general, if Y = M · L, then each yield period (of Y instructions) can be thought of as M
minor yield periods of L instructions each. The act of decrementing the clock register and yielding

74 CHAPTER 6. YIELD PLACEMENT AND POLLING TECHNIQUES

if necessary is performed at least once per minor yield period, and every M ’th time incurs an
ordinary yield. To highlight this relationship, I call the sequence of instructions that updates the
clock register a minor yield; the one of every M minor yields at run time that must peform a yield
instruction is called a major yield. The task of yield placement is now reduced to the placement
of minor yields; they must occur at least once every L instructions, and we will see that reasoning
about the amount of time remaining before the next minor yield is not much harder than reasoning
about the virtual clock itself. Since L is much closer to the lengths of actual basic blocks than Y ,
the loss of precision associated with each join point in a program will be smaller. Moreover, the
cost of a minor yield is so much less than that of a major yield that the overhead of the instruction
counting is insignificant.

YIELD =
// a: N, rck: S(a), ck: 2 + a
subjae rck,rck, (L + 2),end
// rck:int, ck: a
yield
// ck: Y
mov rck,(Y-L-3)
// a′ 7→ Y − L − 3; rck: S(Y − L − 3),
// ck: Y − 1 = L + (2 + a′)

end:
// a′: N, rck: S(a′), ck: L + (2 + a′)

Figure 6.4: Code for a Minor Yield

6.5.2 Minor Yields

A MiniTALT-R implementation of a minor yield is shown in Figure 6.4. Ignoring the type annota-
tions for a moment, the effect of this code is clear. The subjae instruction decrements the clock
register by L + 2. If the result is nonnegative, then execution continues at the label end ; if the
result of the subtraction is negative, a true yield is performed before end is reached. The typing
annotations show that if, for some static term a, the clock register initially holds the value a and
the virtual clock shows 2 + a remaining, then the code after the end label may assume that the
clock register contains some value a′ such that the virtual clock reads L + (2 + a). I will use the
name YIELD to refer to this code sequence.

6.5.3 The Minor Clock

The informal description of the relationship between the clock register and the virtual clock must
now be made precise. In order to ensure that a minor yield is always possible, programs maintain
the invariant that the clock register rck always has some singleton type S(t) and the static ap-
proximation to the virtual clock is always t′ + (2 + t) for some other term t′. When this is the case
I will say t′ is the value of the minor clock. Intuitively, the minor clock captures the number of in-
structions that may be executed before the next minor yield. Notice that in straight-line code, the
minor clock behaves just like the virtual clock in the sense that it decrements with every instruc-
tion (provided it is initially positive). More formally, the following rule for the add instruction is

6.5. CLOCKS AND POLLING 75

derivable:
(Γ(rck) = S(t)) (Γ(ck) = (1 + t′) + (2 + t))

∆;Ψ; Γ ` o1 : int ∆;Ψ;Γ ` o2 : int
∆;Ψ;Γ ` d : int → Γ′ ∆;Ψ;Γ′{ck :t′ + (2 + t)} ` I

∆;Ψ;Γ ` add d, o1, o2; I

This rule shows how to type an add instruction when the assumption that the minor clock is
1 + t′; note that as long as the destination d is not rck , the continuation I will be typed under the
assumption that rck still has type S(t), meaning that the new minor clock is just t′. Similar “minor
clock rules” can be derived for all the instructions of TALT-R except for yield . Furthermore, the
typing annotations in Figure 6.4 suggest that (if one ignores the syntactic inconvenience that it
involves multiple blocks in MiniTALT-R), YIELD essentially acts like an instruction with a typing
rule like the following:

(Γ(ck) = 2 + t) ∆;Ψ; Γ ` rck : S(t) (∆, a:N);Ψ; Γ{rck :S(a), ck :L + 2 + a} ` I

∆;Ψ;Γ ` YIELD ; I

This rule states that YIELD has the effect of turning a state with any minor clock value into one
where the minor clock is L—but it may change the value of the clock register.

As I have mentioned, the fact that YIELD behaves so much like yield means that the local,
global and exceptional placement strategies I previously discussed for yield should also work
for YIELD , tracking the minor clock instead of the virtual clock and placing yield points every L
instructions instead of every Y . When a yielding strategy is adapted to placing minor yields, I call
it a polling strategy. For example, recalling the type of a function under Feeley yielding,

∀a:N.∀ρ:TD. (E + a ≤ Y − 1) ⇒ {eax :B4, esp :({eax :B4, esp :ρ, ck :a} → 0) × ρ, ck :E + a} → 0

and modifying it so that it specifies the function’s behavior with respect to the minor clock instead
of the virtual clock, one gets the type of a function under Feeley polling:

∀a:N.∀b:N.∀ρ:TD. (E + a ≤ L − 1) ⇒
{eax :B4, rck :S(b), esp :(∀b′:N.{eax :B4, rck :S(b′), esp :ρ, ck :a + (2 + b′)} → 0) × ρ,

ck :(E + a) + (2 + b)} → 0

Notice that, while under Feeley yielding a function called with E + a on the virtual clock returns
with a on the virtual clock, under Feeley polling a function called with E + a on the minor clock
returns with a on the minor clock. Notice also that the function may change the value of the clock
register; the code at the return address must be well-typed for any possible value on the clock
register, assuming only the relationship between the register and the virtual clock that defines the
minor clock.

Figure 6.5 shows the Fibonacci function from Figure 6.2 implemented with Feeley polling. This
new function has the type given above, and its code is exactly the same except that yield instruc-
tions have been replaced by the YIELD macro. Notice that every YIELD , and every recursive call,
may change the value of the clock register.

76 CHAPTER 6. YIELD PLACEMENT AND POLLING TECHNIQUES

Note: this example assumes that E ≥ 4 and that L ≥ 2E + 8.

fib:
// a, b0 : N, rck: S(b0),
// ck : (E + a) + (2 + b0), (E + a ≤ L − 1) true

cmp eax,1
ja L1 // n ≤ 1?
mov eax,1
// ck : (E − 3 + a) + (2 + b0)
ret // Return 1

L1:
// ck : (E − 2 + a) + (2 + b0)
push eax
sub eax,1
// ck : (E − 4 + a) + (2 + b0)
YIELD
// b1 : N, rck: S(b1)
// ck : L + (2 + b1)
call fib // Compute fib(n-1)
// b2 : N, rck: S(b2)
// ck : L − E − 1 + (2 + b2)
pop ecx
push eax
mov eax,ecx
sub eax,2
// ck : L − E − 5 + (2 + b2)
call fib // Compute fib(n-2)
// b3 : N, rck: S(b3)
// ck : L − 2E − 6 + (2 + b3)
pop ecx
add eax,ecx // eax := fib(n-1)+fib(n-2)
// ck : L − 2E − 8 + (2 + b3)
YIELD
// b4 : N, rck: S(b4)
// ck : L + (2 + b4)
ret // Return

Figure 6.5: Fibonacci using Feeley Polling

6.5. CLOCKS AND POLLING 77

YIELD(F) =
// a: N, rck: S(a), ck: F + (2 + a)
subjae rck,rck, (L− F + 2),end
// if taken: rck: S(a′), a = a′ + L − F + 2 true,
// ck: (F + a) = F + L − F + 2 + a′ = L + (2 + a′)
// otherwise: rck:int, ck: F + a
yield
// ck: Y
mov rck,(Y-L-3)
// a′ 7→ Y − L − 3; rck: S(Y − L − 3), ck: Y − 1 = L + (2 + a′)

end:
// a′: N, rck: S(a′), ck: L + (2 + a′)

Figure 6.6: A Minor Yield with F on the Clock

YIELD(F,R) =
// a: N, rck: S(a), ck: F + (2 + a)
subjae rck,rck, (R− F + 2),end
// if taken: rck: S(a′), a = a′ + R − F + 2 true,
// ck: (F + a) = F + R − F + 2 + a′ = R + (2 + a′)
// otherwise: rck:int, ck: F + a
yield
// ck: Y
mov rck,(Y-R-3)
// a′ 7→ Y − R − 3; rck: S(Y − R − 3), ck: Y − 1 = R + (2 + a′)

end:
// a′: N, rck: S(a′), ck: R + (2 + a′)

Figure 6.7: Resetting the Clock from F to R

6.5.4 Tricks With Polling

In addition to reducing the difference between the “yield” period and basic block size, polling
allows more precision than ordinary yielding because one has control over how much the clock
register is decremented with every minor yield. For example, it seems to occur frequently that a
yield must be placed at a location where there is known to be some time left on the clock. In an
explicit polling scheme, one can take advantage of this by decrementing the clock register by a
smaller amount—in effect, saving the unused cycles so that they can be used later. The code in
Figure 6.6 illustrates this.

Of course, it is also possible to decrement the clock register by more than L + 2. In fact, there is
no reason at all that the minor clock must be reset to L at every minor yield; if one finds oneself at
the beginning of a basic block that is of length R (where R ≤ Y −3), then one can subtract R+2 from
rck and set the minor clock to exactly what the current block requires. This is accomplished by
the code sequence YIELD(F,R) defined in Figure 6.7. Note that the first two forms of minor yield
are really special cases of this last one: YIELD(F) is simply YIELD(F,L), and the YIELD from

78 CHAPTER 6. YIELD PLACEMENT AND POLLING TECHNIQUES

Figure 6.4 is YIELD(0, L). The formal translation in the next section will use the two-argument
notation exclusively.

Using this precise minor yield in conjunction with yield-on-jump and call-return yield place-
ment strategies results in a polling strategy that I call precise yield-on-jump. Under this strategy,
every basic block in the program begins with a minor yield that “reserves” exactly the right num-
ber of minor clock cycles for that block. While this does introduce more minor yields than would
be needed under, say, forward propagation and Feeley polling, it eliminates all of the error asso-
ciated with join points. The only “lost cycles” now occur at major yields. A major yield happens
when the cycles remaining on the virtual clock (there will nearly always be some left) are insuffi-
cient for the current basic block; these left-over cycles cannot be used, but the waste is bounded
by the length of the longest basic block in the program.

6.6 Chapter Summary

If programs written by programmers who are ignorant of timing requirements are to satisfy a
timing policy like that of TALT-R, yielding operations must be inserted into those programs by
the certifying compiler. This process must balance the absolute and inviolable requirements of the
type system, which serves as the proxy for the safety policy, with the desire to yield as infrequently
as possible for the sake of performance.

I have described a number of techniques and approaches to yield placement, ranging from the
very simple to the fairly complex. The more complicated techniques are based not on advanced
static analyses but on dynamic instruction counting, an easily understood mechanism that offers
low yield frequencies with a fairly small investment in type system complexity and low perfor-
mance overhead.

Chapter 7

Compilation of Lilt

In this chapter, I will finally give a formal translation from Lilt to MiniTALT-R. The purpose of
this formal translation is twofold. First, since it relates any well-typed Lilt program to an equiv-
alent assembly language program, it resolves any ambiguitiy there may have been in my prose
description of the semantics of Lilt language constructs. (Of course, giving an operational seman-
tics for Lilt directly would have served the same need.) Second, and more importantly, it allows
me to argue that the type system I propose for MiniTALT-R is sufficiently general to support all
the constructs and idioms of a typical high-level programming language. In particular, it demon-
strates that the polling technique I described in Section 6.5 is flexible enough that resource bound
certification need not get in the programmer’s way.

The translation I give here uses Feeley polling for interprocedural yield placement, but is non-
deterministic with respect to local yield placement. In other words, there are many different
ways to translate any Lilt function, differing in the number and location of minor yields in the
MiniTALT-R code. An actual implementation of this translation must resolve the nondeterminism
using a heuristic such as the ones I described earlier in this proposal. (The prototype compiler I
have implemented uses forward propagation.)

Although the implications of polling are the main point of this proposal, the formal translation
I give in this chapter addresses all aspects of type-directed compilation of Lilt. In particular, I
give a complete translation from Lilt types to TALT-R types, and I show how to compile all the
primitive operations of Lilt. This makes the translation as a whole rather technical. Before giving
the translation rules themselves, therefore, I must take some time to introduce some conventions
and notation.

7.1 Type-Directedness

Formal translations between languages generally come in two flavors: syntax-directed and type-
directed.1 Syntax-directed translations are the more naı̈ve variety: they are defined recursively
(that is, by induction) over the syntax of the source language, generally using little or no context
information. A syntax-directed translation usually applies to any term, well-typed or not; the
static correctness theorem for the translation states that if a source term is well-typed, then its

1There is a third type, called an elaboration, that differs from both of these in that it is used to define the static
semantics of the source language in terms of the target. The archetypical elaboration is the Harper-Stone interpretation
of Standard ML [33]; the translation of EXTALT-R to XTALT-R performed by the certifying assembler (but not discussed
in this thesis) is an elaboration.

79

80 CHAPTER 7. COMPILATION OF LILT

translation is well-typed. On the other hand, type-directed translations are (roughly speaking)
defined by inference rules that are constructed to closely mirror the typing rules of the source
language; they are often thought of as being defined by induction over typing derivations, rather
than over terms. Because of this, it is usually very easy to prove that a term may be translated
if and only if it is well-typed, and not very difficult in principle to prove that its translation is
well-typed in the target language.

Although a syntax-directed translation is often simpler to define and implement, there are
many cases where it simply does not make sense to use one. For instance, if the way a term is
translated ever depends on the type of one of its subterms, then it is usually advisable to define
the translation by induction on typing rather than syntax. Type-directed translations are also
called for when the target language is explicitly typed, particularly if the target requires typing
annotations in places where the source language does not. This latter case clearly arises when
translating a typed language like Lilt into explicitly-typed assembly language: the assembly code
for, say, a conditional statement will contain at least one label, which must be annotated with a
type even though the relevant typing information is not explicitly present in the source program.

It may be a little surprising, then, that Lilt may (I conjecture) be translated to MiniTALT-R by a
syntax-directed translation. This is so because MiniTALT-R (as opposed to EXTALT-R) is implicitly
typed, so the translation does not have to generate any typing annotations. Furthermore, it hap-
pens to be the case that the (concrete) machine instructions implementing any Lilt expression can
be computed independently of the types of any of its subterms. However, the translation I give
in this chapter is supposed to be an abstract stand-in for the one implemented by my compiler,
and that implementation targets EXTALT-R, not MiniTALT-R; because of the explicit typing anno-
tations (and coercions) needed in EXTALT-R, my actual Lilt compiler is type-directed. Therefore,
I give a type-directed translation in this chapter even though doing so renders the presentation a
good deal less concise. I will use the context and typing information available in the setting of a
type-directed translation to annotate the MiniTALT-R output with typing information for labels,
even though such annotations are not officially part of MiniTALT-R. This will hopefully help make
the intended meaning of the generated code more clear.

7.2 Conventions and Notations

7.2.1 Variable Naming

For the purposes of my translation from Lilt to TALT, I will make some assumptions about local
variable names. First, I assume that local variable names have the following syntax:

s ::= arg(i) | loc(i)

Second, I assume that the context specifying a function’s formal parameters has the form Γa =
[arg(1):τ1, . . . , arg(m):τm] and that the list of local variables declared by the function’s entry block
is always loc(1), . . . , loc(n). Note that I make these assumptions without any loss of generality,
since any Lilt function may be α-varied into this form. With these conventions in place, the name
of a local storage location s identifies it as either a function argument or a local variable, and I will
show shortly how the TALToperand or destination corresponding to a location may be determined
based on its name. Furthermore, it is no longer necessary to write the names of the arguments and
local variables where they are declared at the start of the function, so to save space I will write

func(∆; [τ1, . . . , τA]; τ).(enter(L).e, `1 = B1, . . . , `m = Bm)

7.3. TYPES AND DATA REPRESENTATION 81

|T | = T4

|k1 → k2| = |k1| → |k2|

|α| = α

|int | = B4

|bool| = B4

|unit| = B4

|〈τ1, . . . , τn〉| = mbox(|τ1| × · · · × |τn|)

|[i1:τ1, . . . , in:τn]| = box (set =(i1) × |τ1|) ∨ · · · ∨ box (set =(in) × |τn|)

|τ array| = ∃α:N.box (set =(α) × mbox(|τ | ↑ α))

|∀α1:k1, . . . , αn:kn.τ | = ∀α1:|k1|. . . . ∀αn:|kn|.|τ |

|∃α1:k1, . . . , αn:kn.τ | = ∃α1:|k1|. . . . ∃αn:|kn|.|τ |

|λα:k.c| = λα:|k|.|c|

|c1 c2| = |c1| |c2|

Figure 7.1: Translation of kinds and types (except function types)

instead of

func(∆; [arg(1):τ1, . . . , arg(A):τA]; τ).(enter(loc(1), . . . , loc(L)).e, `1 = B1, . . . , `m = Bm)

when I define the translation.

7.2.2 Minor Clock Notation

The translation uses a polling strategy for yielding, so all the code blocks in the MiniTALT-R
output must make assumptions about the minor clock that are reflected in their types. To write
these types, I will use some notation based on the fiction that there is a single register called mck,
analogous to ck , that holds the value of the minor clock. In particular, for MiniTALT-R register
file types Γ, define:

Γ[mcku 7→ t] = Γ[esi 7→ S(u), ck 7→ t + (2 + u)]

Here u (which will nearly always be a variable) is the constraint term representation of the clock
register value. The register esi serves as the clock register. Γ[mcku 7→ t] is the register file type
that specifies u on the clock register and t on the minor clock, and agrees with Γ on everything
else. I will take the liberty of writing register files that specify a static term for mck in a similar
way: {r 1:τ1, . . . , r n:τn, mcku:t} will denote the register file type {r 1:τ1, . . . , r n:τn}[mcku 7→ t] as
defined above.

7.3 Types and Data Representation

The translation of Lilt kinds and type constructors is defined in Figures 7.1 and 7.2. The translation
of kinds is nearly trivial; the only point of interest is that the Lilt kind T is translated as T4, which

82 CHAPTER 7. COMPILATION OF LILT

|(τ1, . . . , τm) → τ | = ∀ρ1:TD.∀ρ2:TD.∀αf :T4.∀αh:T4.∀a:N.∀b:N. (E + a ≤ L − 1) ⇒

{edi :τe, ebp :αf , esp :τr × σ0, mckb:E + a)} → 0

where: σ0 = |τ1| × · · · × |τm| × ρ1 × τh × ρ2

τh = αh ∧ ∀b′:N.{eax :|τexn|, esp :ρ2, mckb′ :H} → 0
τe = sptr (τh × ρ2)
τr = ∀b′′:N.{eax :|τ |, edi :τe, ebp :αf , esp :σ0, mckb′′ :a} → 0

Figure 7.2: Translation of function types

means that any Lilt value (since it has a type of kind T) will be represented by something that is
32 bits wide. In particular, my translation will not require any run-time type constructor analysis
(as in [19, 17, 57]) to compute the sizes of values.

The translations of base types, products and quantified types are not surprising. Sum types
are translated using TALT’s singleton and union types: for instance, a value of type [i1:τ1, i2:τ2] is
either a pointer to a pair consisting of the number i1 and a value of type τ1 or a pointer to a pair
consisting of the number i2 and a value of type τ2. The translation of array types also makes use of
singletons: a value of array type is a pair whose first element is the length of the array and whose
second element is a pointer to the array data itself.

Unsurprisingly, the treatment of function types is the most complicated part of the type transla-
tion, because the type of a function must completely capture not only the interprocedural yielding
or polling strategy used by the compiler, but also the procedure calling and linkage conventions,
which in the case of Lilt includes not only the passing of parameters and the return address and
the saving of registers, but also the (interprocedural) exception handling mechanism. As the trans-
lation in Figure 7.2 indicates, a Lilt function expects to receive its arguments and return address
on the stack, and returns its result in eax . The frame pointer register, ebp , is managed using a
callee-saves discipline: its initial value, of the unknown type αf , is restored upon exit from the
function.

Our treatment of exception handling is very similar to that of the TALx86 Popcorn compiler
[45], which in turn appears to be based on the canonical translation into STAL [46]. A Lilt function
expects to be passed the current exception pointer in register edi . The exception pointer points
to the current exception handler, which is stored in an unknown location on the stack. The type
of the stack expected by the function, therefore, consists of the return address (of type τr), the m
arguments, a portion of unknown type ρ1, the exception handler (of type τh), and finally a tail
of unknown type ρ2. The handler itself is a pointer to code that can accept a stack of type ρ2;
therefore, to raise an exception one may simply move the exception value to be raised into eax ,
move the exception pointer from edi into esp , and execute a ret instruction.

The typing of the exception handler itself is a bit complicated: on the one hand, the function
must be able to jump to the handler when raising an exception, but on the other hand, the func-
tion is responsible for returning the handler to its caller when it exits. The exception handler thus
behaves both like an argument or return address (the function requires it to have a certain type)
and like a callee-save register (the act of calling a function must not result in the loss of any infor-
mation about the current handler). This kind of pattern usually calls for bounded quantification;
rather than add this feature to TALT-R, I use a known trick for simulating it using ordinary univer-
sal quantification and intersection types [60, 12]. Intuitively, the parameter αh is the “real” type

7.4. CLOCK SPECIFIERS 83

κ ::= justn | retplus n |justn|a = n |retplus n|a = n + a

(justn) − m = just(n − m), if n ≥ m
(retplusn) − m = retplus(n − m), if n ≥ m

justn ≥ justm iff n ≥ m
justn ≥ retplusm iff n − (L − E − 1) ≥ m
retplusn ≥ justm iff n ≥ m
retplusn ≥ retplusm iff n ≥ m

Figure 7.3: Clock Specifiers

of the exception handler; since the value pointed to by edi is of the intersection type τh, it has
the unknown type αh but is additionally bounded above by the right conjunct, which is the code
pointer type the function requires the handler to have.

Finally, observe that the translation of function types specifies a dynamic polling discipline
for yielding, as described in Section 6.5. The minor clock pre- and postconditions of a function
are expressed using the minor clock notation just defined in Section 7.2.2. The value of the clock
register when the function is called is the static term parameter b. The translated function type
also specifies a Feeley-style placement strategy for minor yields: the minor clock upon entry to
the function is assumed to be E + a (where a is a static term parameter), and it will be a when the
function returns. The exception handler pointed to by edi is expected to require a minor clock of
H . The numbers L, E and H are parameters of the translation and have the same meanings as in
Chapter 6. Note that just like in my earlier discussion of polling, the return address and exception
handler must not care about the exact value of the clock register.

7.4 Clock Specifiers

In MiniTALT-R code produced by the translation, the minor clock at any point within a function
will have one of two forms: either it will be a constant, or it will be n+a, where a is the amount that
must be present when the function returns. So that the translation rules do not have to mention
the variable a, Figure 7.3 introduces clock specifiers, which are a more abstract way of describing
the minor clock. The clock specifier justn corresponds to n on the minor clock; retplusn means
that the value of the minor clock is n plus whatever is required for the function to return. Given
the variable a, |κ|a is the static term representation of the minor clock denoted by κ if the function
must return with a on the clock.

The figure also defines the operation of decrementing a clock specifier by an integer constant
(κ − m); note that this operation is not always defined. Finally, the partial order ≥ specifies the
constraints on clock specifiers that can be soundly inferred. Subtraction and ordering of clock
specifiers will be used in the translation rules to determine when minor yields are needed.

The partial ordering and decrement operation on clock specifiers express constraints that can
be proven in the TALT-R constraint logic in the context of a translated function. In particular, the
type of any code block in a function will associate with the variable a a constraint hypothesis

84 CHAPTER 7. COMPILATION OF LILT

(E + a ≤ L − 1), which is enough to prove any TALT-R constraint derived from the clock specifier
notation.

Lemma 7.1 Let ∆ = (a:N, (E + a ≤ L − 1) true). Then:

1. If κ − m = κ′ then ∆ ` |κ|a = m + |κ|a, and this constraint is in DLP0.

2. If κ1 ≥ κ2 then ∆ ` |κ2|a ≤ |κ1|a true, and this constraint is in DLP1.

Proof: Part (1) is trivial and is left to the reader to check.

For part (2), there are four cases:

Case 1: κ1 = justn, κ2 = justm and n ≥ m. Then [[|κ2|a ≤ |κ1|a]] = (m − n ≤ 0), which is in
DLP0 and hence in DLP1.

Case 2: κ1 = retplusn, κ1 = retplusm and n ≥ m. Similar to the previous case.

Case 3: κ1 = retplusn, κ2 = justm and n ≥ m. Then

[[|κ2|a ≤ |κ1|a]] = (m − (n + a) ≤ 0) = (−a + (m − n) ≤ 0)

which is in DLP0.

Case 4: κ1 = justn, κ2 = retplusm and n− (L−E − 1) ≥ m. In this case we must finally use
the constraint hypothesis in ∆. Note that

[[∆]] = {[[E + a ≤ L − 1]]} = {(E − L + 1) + a ≤ 0}.

Now, |κ1|a = n and |κ2|a = m + a. Thus

[[|κ2|a ≤ |κ1|a]] = (a + (m − n) ≤ 0).

Subtracting the constraint in [[∆]] gives (m−n+L−E−1 ≤ 0). By assumption, the number on
the left-hand side is nonpositive, so we have found a semantic proof of the desired judgment
at depth 1 as desired.

End of Proof.

7.5 Stacks, Register Files and Labels

In order to give typing annotations for the labels in the output of my translation, I must be able
to specify the types of all the registers, including the stack pointer, at every one of these program
points. More generally, in order to argue that my translation is type-preserving, I must be able
to specify the types I intend for the register file and stack at any point in the MiniTALT-R pro-
gram I produce. This is more technically involved than might be expected, mostly because of the
exception-handling constructs of Lilt.

The stack frame layout used by a Lilt function is shown in Figure 7.4. Note that the stack
“grows downward” in the diagram just as it does in memory. All function arguments are passed
and stored on the stack (above the return address) and all of the function’s local variables are
stack-allocated. The figure also illustrates the usage of two important registers (ebp and edi)
that point into the stack. Register ebp plays its usual role as the frame pointer, except that it is

7.5. STACKS, REGISTER FILES AND LABELS 85

(before pushing local exception handlers) (after pushing r local handlers)

Figure 7.4: A Lilt function’s stack frame

set up to point to the bottom of the stack frame instead of into the middle as is more customary.
This is because I wish to address both arguments and local variables using displacements from
ebp , and in TALT these displacements are not allowed to be negative. Each function stores its
caller’s frame pointer at the very bottom of its initial stack frame and reloads this value into ebp
before returning. Register edi is the exception pointer; as I have already mentioned, its value is
the address of a location on the stack where the current exception handler is stored. Thus at the
beginning of a function, edi points somewhere above the function’s own stack frame.

The left-hand side of Figure 7.4 shows the initial state of a function’s stack frame; in particular,
this frame has no pending local exception handlers. The right-hand side shows a frame in which
r handlers have been pushed by the function. Notice that before pushing the first local exception
handler, the function saves the initial value of edi on the stack; this value must be reloaded
into edi when the function returns, or any time the non-local exception handler becomes current
again. As long as the current exception handler is local to the current function, edi will have the
same value as esp .

The type of the stack at any point in a Lilt program can be determined using the function ST

in Figure 7.5. Intuitively, ST ρ1,ρ2,αf ,αh,a(Ξ,Γ, τ) is the type of the stack type corresponding to a
Lilt exception context of Ξ and local context of Γ, in a function that returns type τ . The subscripts
ρ1, ρ1, αf , αh, a specify some special variables that are allowed to occur free in these types: ρ1 and
ρ2 are the two unknown portions of the stack, αf is the type of the saved value of ebp , αh is the
precise type of the exception handler, and a is the value that must be on the minor clock when
the function returns. (To reduce verbosity, these subscripts are elided for occurrences of ST on the
right-hand side of each clause when they are the same as on the left-hand side, and are elided on
the left-hand side when they do not appear at all on the right.)

Figure 7.6 shows how to find the types of the registers for any point in a compiled Lilt program
First, RF ρ1,ρ2,αf ,αh,a,u(Ξ,Γ, τ, t) is the register file type associated with the exception context Ξ and
local context Γ, assuming τ is the return type of the current function and t is the value of the minor

86 CHAPTER 7. COMPILATION OF LILT

ST ρ1,ρ2,αf ,αh,a(·,Γ, τ) = αf × |τl1| × · · · × |τlm| × τr × σ0

where: Γ = [arg(1):τa1, . . . , arg(n):τan, loc(1):τl1, . . . , loc(m):τlm]

σ0 = |τa1| × · · · × |τan| × ρ1 × τh × ρ2

τh = αh ∧ ∀b:N.{eax :|τexn|, esp :ρ2, mckb:H} → 0

τr = ∀b′:N.{eax :|τ |, ebp :αf , edi :τe, esp :σ0, mckb′ :a} → 0

τe = sptr (τh × ρ2)

ST ρ1,ρ2,αf ,αh,a((·,Γ
′),Γ, τ) = (∀b:N.{eax :|τexn|, esp :τe × ST (·,Γ′, τ), mckb:H} → 0)

×τe × ST (·; Γ; τ)

where: τh = αh ∧ ∀b:N.{eax :|τexn|, esp :ρ2, mckb:H} → 0

τe = sptr (τh × ρ2)

ST ((Ξ,Γ′),Γ, τ) = (∀b:N.{eax :|τexn|, esp :ST (Ξ,Γ′, τ), mckb:H} → 0)

×ST (Ξ,Γ, τ)

if Ξ 6= ·

Figure 7.5: Determining the Stack Type

RF ρ1,ρ2,αf ,αh,a,u(·,Γ, τ, t) = {edi :τe, ebp :sptr (σ1), esp :σ1, mcku:t}

where: τh = αh ∧ ∀b′:N.{eax :|τexn|, esp :ρ2, mckb′ :H} → 0

τe = sptr (τh × ρ2)

σ1 = ST ρ1,ρ2,αf ,αh,a(·,Γ, τ)

RF ρ1,ρ2,αf ,αh,a,u(Ξ,Γ, τ, t) = {edi :sptr (σ2), ebp :sptr (σ1), esp :σ2, mcku:t}

where: σ1 = ST ρ1,ρ2,αf ,αh,a(·,Γ, τ)

σ2 = ST ρ1,ρ2,αf ,αh,a(Ξ,Γ, τ)

Ξ 6= ·

Figure 7.6: Determining the Register File Type

7.6. TRANSLATING OPERANDS 87

LL(∆,Ξ,Γ, τ, κ, [r̄1 7→ τ1, . . . , r̄n 7→ τn]) =
∀α1:|k1|. . . . ∀αm:|km|.∀ρ1:TD.∀ρ2:TD.∀αf :T4.∀αh:T4.

∀a:N.∀b:N. (E + a ≤ L − 1) ⇒
RF ρ1,ρ2,αf ,αh,a,b(Ξ,Γ, τ, |κ|a)[r̄1 7→ τ1, . . . , r̄n 7→ τn] → 0

where ∆ = α1:k1, . . . , αm:km

|lbl(∆′; Ξ; Γ)|∆,τ,κ = LL((∆,∆′); Ξ; Γ, τ, κ, [])

|hnd(∆′; Ξ; Γ)|∆,τ,κ = ∀α1:|k1|. . . . ∀αm:|km|.∀ρ1:TD.∀ρ2:TD.∀αf :T4.∀αh:T4.

∀a:N.∀b:N. (E + a ≤ L − 1) ⇒
{eax :|τexn|, esp :ST ρ1,ρ2,αf ,αh,a(Ξ,Γ, τ), mckb:H} → 0

where (∆,∆′) = α1:k1, . . . , αm:km

Figure 7.7: Label and Block Types

clock. The subscripts ρ1, ρ2, αf , αh, a, u are as in the definition of ST , with the addition of u, the
static term representation of the register clock.

Finally, Figure 7.7 shows how to compute types for labels occurring within a translated func-
tion body and how to translate Lilt block types. First, LL(∆,Ξ,Γ, τ, κ, [r̄1 7→ τ1, . . . , r̄n 7→ τn]) is
the type of a local label with type parameters given by ∆ (this includes both the type parameters
of the enclosing function and any additional parameters of the current block) and expecting ex-
ception handlers described by Ξ, local storage described by Γ, and κ describing the minor clock,
where τ again is the return type of the function in which the label appears and the additional type
assignments r̄i 7→ τi specify the types of values stored temporarily in registers. The translation
of an ordinary block type is easily defined using LL; LL is also used to annotate labels that occur
in the interior of a Lilt block. Exception handler blocks are a little different: an exception handler
block expects an exception value in eax and H on the minor clock.

7.6 Translating Operands

Because of my assumptions about the names of local storage locations, if the total number M
of local variables allocated by the current function is known then the operand corresponding to
location s (denoted by |s|M) can be determined from the name s as follows:

|loc(i)|M = [ebp+ (4i)]

|arg(i)|M = [ebp+ (4(1 + M + i))]

In the MiniTALT-R syntax used in this proposal, stack operands such as these are written exactly
the same as the destinations denoting the same locations. To refer to the destination corresponding
to the location s I will write |s|dM .

I assume there is an obvious embedding of Lilt function symbols into assembly-level labels,

88 CHAPTER 7. COMPILATION OF LILT

and extend the mapping | · |L to all Lilt operands as follows:

|n|M = im (n) | ? |M = im (0)
|tt|M = im (1) |f |M = f
|ff|M = im (0) |q@v|M = |v|M

7.7 Compiling Expressions

In general, a Lilt block may translate to more than one MiniTALT-R block; a Lilt expression will
translate to a MiniTALT-R instruction sequence plus zero or more additional blocks. The transla-
tion rules will use the letter S to range over sequences of MiniTALT-R blocks:

S ::= ε | `:τ = I S

To make MiniTALT-R code look more like ordinary assembly code, I will freely concatenate se-
quences of blocks in the obvious way.

Since the translation is type-directed, its structure fol-
C ::= (Φ;∆;Λ;Ξ; Γ; τ)
T ::= `1:κ1, . . . , `n:κn

Figure 7.8: Translation Contexts

lows the typing rules of Lilt rather closely; however, to
reduce the clutter on the left side of the turnstile in trans-
lation judgments, I collect all the context information for
a Lilt expression into one translation context, ranged over
by C as shown in Figure 7.8. The figure also shows the

syntax for local timing contexts T ; a local timing context maps each local label in a Lilt function
to the minor clock value that block expects. To manipulate the context information collected in a
translation context C as required by the translation rules, some notation is required. In particular,
if C = (Φ;∆;Λ;Ξ; Γ; τ), then define the following:

• locs(C) = dom(Γ)

• handlers(C) = length(Ξ)

• C(`) = Λ(`)

• C[s 7→ τ ′] = (Φ;∆;Λ;Ξ; Γ[s 7→ τ ′]; τ)

• C ⊕ ∆′ = (Φ; (∆,∆′); Λ; Ξ; Γ; τ)

• C ⊕ Γ′ = (Φ;∆;Λ; (Ξ,Γ′); Γ; τ)

• poph(C) = (Φ;∆;Λ;Ξ′; Γ; τ), if Ξ = (Ξ′,Γ′)

• |s|C = |s|B , where dom(Γ) = {arg(1), . . . , arg(A), loc(1), . . . , loc(B)} (and similarly for |s|dC)

• C ` c : k iff ∆ ` c : k

• C ` c1 = c2 : k iff ∆ ` c1 = c2 : k

• C ` v : τ ′ iff Φ;∆;Γ ` v : τ ′

• C |= Γ′ iff ∆ ` Γ ≤ Γ′

• C |= Ξ′ iff ∆ ` Ξ ≤ Ξ′

7.7. COMPILING EXPRESSIONS 89

• C |= canraise iff ∆ ` Ξ handles Γ

The complete translation rules are in Section 7.8. The translation judgment, C,T , κ ` e I S,
means that the instruction sequence I , together with the additional blocks S, implements the
expression e assuming κ describes the minor clock. The translation is highly nondeterministic:
in particular, it makes no commitment to either forward or backward propagation, and does not
specify how to determine the initial minor clock requirement for each block within a function. Two
translation rules ensure that a minor yield may be inserted before any subexpression, whether it
is needed or not:

C;T ; (justm) ` e I S

C;T ; (justn) ` e YIELD(n,m) I S

C;T ; (justm) ` e I S

C;T ; (retplus n) ` e YIELD(n,m) I S

Note that this rule takes advantage of the clock register “tricks” discussed in Section 6.5.4, setting
the minor clock to an arbitrary value m. The rules do not specify the value of m; in practice an
implementation may either use m = L everywhere in a program, as my prototype does, or it may
perform some analysis to determine good values for m at each minor yield it generates.

In the rule for translating an intraprocedural jump, the timing context T is consulted to ensure
the target block’s clock expectations are met:

(C(`) = lbl(α1:k1, . . . , αn:kn; Ξ′; Γ′))
κ − 1 ≥ T (`) C ` ci : ki C |= Γ′[~c/~α] C |= Ξ′[~c/~α]

C;T ;κ ` goto `[c1, . . . , cn] jmp `

Since the initial minor clock is κ, it will be κ−1 after the jmp instruction. Thus in order for this rule
to apply, it must be the case that κ−1 is greater than or equal to the minor clock value expected by
block `. (The other premises of this rule correspond directly to the premises of the typing rule for
goto.) If it is not the case that κ−1 ≥ T (`), then this rule will not apply, but one of the two yielding
rules will; thus a well-typed goto expression can always be compiled, possibly by yielding first.

The rule for returning from a function takes account of the fact that a clock specifier of retplusn
means minor clock is sufficient to execute n instructions, the last of which may be a ret . It takes
a few instructions, however, to get ready to return:

(locs(C) = [arg(1), . . . , arg(A), loc(1), . . . , loc(B)])
C ` v : τ κ − 4 ≥ retplus(0) (handlers(C) = 0)

C;T ;κ ` return v
mov eax , |v|C
pop ebp
sfree (4B)
ret

The code generated by this rule moves the value to be returned into eax , moves the caller’s frame
pointer back into ebp , frees the stack space allocated by the function, and finally returns. This
takes four instructions, so the rule requires that κ− 4 ≥ retplus(0). (This is equivalent to requiring
κ ≥ retplus(4).) A side condition in this rule requires that handlers(C) = 0; there is a slightly
different rule for returning when there are local exception handlers that must be removed from
the stack.

90 CHAPTER 7. COMPILATION OF LILT

Most of the other instructions simply decrement the clock specifier κ by the appropriate amount
before translating their subexpressions. For example, translation of primitive arithmetic is straight-
forward:

C ` vi : int for 1 = 1, 2 C[s 7→ int];T ; (κ − 3) ` e I S

C;T ;κ ` let s = +(v1, v2) in e
mov eax , |v1|C
add eax , eax , |v2|C
mov |s|dC , eax
I

S

(Note, though, that a simple addition takes three MiniTALT-R instructions because all local storage
is on the stack. This highlights the need for a better register allocation scheme.) If the translation
encounters an addition expression like this one in a Lilt program and the minor clock is less than 3
(that is, if κ−3 is undefined), then it must translate that expression using the appropriate yielding
rule. Unfortunately, some Lilt operations can in principle require an arbitrary number of instruc-
tions: allocating a tuple of size n requires as many as 2n + 2 instructions, and calling a function
with n arguments costs n + E + 3. It is therefore impossible to require these operations to be com-
piled to yield-free instruction sequences. The translation given here ignores these issues, but there
is no reason a real compiler cannot be designed to deal with wide tuples and high-arity functions.

7.8 Complete Translation Rules

` ∆ ∆ ` τi : T for each i ∆ ` τ : T ∆ ` Λ (dom(T) = dom(Λ))
(Φ; ∆; Λ; ·; Γ; τ); T ; (retplus(E − 2)) ` e I S0

Φ; ∆; Λ; τ ; T ` Bi : (Λ(`i), T (`i)) Ii Si for 1 ≤ i ≤ m

Φ ` func(∆;~τ ; τ).(enter(L).e, `1 = B1, . . . , `m = Bm) : ∀∆.(~τ) → τ
f : |∀∆.(~τ) → τ | =

salloc (4L)
push ebp
I

S0

`1 : |Λ(`1)|∆,τ,T (`1) = I1

S1

...
`m : |Λ(`m)|∆,τ,T (`m) = Im

Sm

where
Γ = [arg(1):τ1, . . . , arg(p):τp, loc(1):ns , . . . , loc(L):ns]
each Bi is either block(∆i; Ξi; Γi).e or hndl(∆i; Ξi; Γi; s).e, and
dom(Γi) = dom(Γ) for each i

∆, ∆′ ` Ξ
∆, ∆′ ` Γ (Φ; (∆, ∆′); Λ; Ξ; Γ; τ); T ; κ ` e I S

Φ; ∆; Λ; τ ; T ` block(∆′; Ξ; Γ).e : (lbl(∆′; Ξ; Γ), κ) I S

7.8. COMPLETE TRANSLATION RULES 91

∆, ∆′ ` Γ
(Φ; (∆, ∆′); Λ; ·; Γ[s 7→ τexn]; τ); T ; (just(H − 3)) ` e 7→ I S

Φ; ∆; Λ; τ ; T ` hndl(∆′; ·; Γ; s).e : (hnd(∆′; ·; Γ), κ)
pop edi
mov ebp, esp
mov |s|Γ, eax
I

S

(E = length(Ξ) 6= 0) ∆, ∆′ ` Ξ ∆, ∆′ ` Γ
(Φ; (∆, ∆′); Λ; Ξ; Γ[s 7→ τexn]; τ); T ; (just(H − 4)) ` e 7→ I S

Φ; ∆; Λ; τ ; T ` hndl(∆′; Ξ; Γ; s).e : (hnd(∆′; Ξ; Γ), κ)
mov edi , esp
mov ebp, esp
addsptr ebp , ebp , 4(E + 1)
mov |s|Γ, eax
I

S

(locs(C) = [arg(1), . . . , arg(A), loc(1), . . . , loc(B)])
C ` v : τ κ − 4 ≥ retplus(0) (handlers(C) = 0)

C; T ; κ ` return v
mov eax , |v|C
pop ebp
sfree (4B)
ret

(locs(C) = [arg(1), . . . , arg(A), loc(1), . . . , loc(B)])
C ` v : τ κ − 5 ≥ retplus(0) (X = handlers(C) 6= 0)

C; T ; κ ` return v
mov eax , |v|C
mov edi , [esp + 4X]
mov ebp, [esp + (4(X + 1))]
sfree (4(B + X + 2))
ret

(C(`) = lbl(α1:k1, . . . , αn:kn; Ξ′; Γ′))
κ − 1 ≥ T (`) C ` ci : ki C |= Γ′[~c/~α] C |= Ξ′[~c/~α]

C; T ; κ ` goto `[c1, . . . , cn] jmp `

κ − 3 ≥ just H
C ` v : τexn C |= canraise

C; T ; κ ` raise v
mov eax , |v|C
mov esp , edi
ret

92 CHAPTER 7. COMPILATION OF LILT

C ` v : (τ ′
1 . . . , τ ′

n) → τ ′′ C |= canraise

C ` vi : τ ′
i for 1 ≤ i ≤ n C[s 7→ τ ′′]; T ; (κ − (n + 3 + E)) ` e 7→ I S

C; T ; κ ` let s = v(v1, . . . , vn) in e
push |vn|C
...
push |v1|C
call |v|C
mov |s|d

C
, eax

sfree 4n
I

S

C ` v : τ ′ array C ` v′ : int
C[s 7→ τ ′]; T ; (κ − 7) ` e I S C; T ; (κ − 4) ` raise varrayexn Ie Se

C; T ; κ ` let s = sub(v, v′) in e
mov eax , |v|C
mov ecx , |v′|C
cmpja [eax], ecx , `pass
Ie

Se

`pass : ∀αsz :N.
LL(C, [eax 7→ box (set =(αsz) × mbox(|τ ′| ↑ αsz)), ecx 7→ set <(αsz)]) =

mov eax , [eax + 4]
mov eax , [eax + 0 + 4 · ecx]
mov |s|d

C
, eax

I
S

C ` v1 : τ ′ array C ` v2 : int
C; T ; (κ − 4) ` raise varrayexn Ie Se C ` v3 : τ ′ C; T ; (κ − 7) ` e I S

C; T ; κ ` let sub(v1, v2) := v3 in e
mov eax , |v1|C
mov ecx , |v2|C
cmpja [eax], ecx , `pass
Ie

Se

`pass : ∀αsz :N.
LL(C, [eax 7→ box (set =(αsz) × mbox(|τ ′| ↑ αsz)), ecx 7→ set <(αsz)]) =

mov eax , [eax + 4]
mov edx , |v3|C
mov [eax + 0 + 4 · ecx], edx
I

S

7.8. COMPLETE TRANSLATION RULES 93

C ` v : [j:τ , i:τ ′, j:τ
′
]

C[s 7→ [i:τ ′]]; T ; (κ − 4) ` e1 I1 S1 C[s 7→ [j:τ, j:τ
′
]]; T ; (κ − 4) ` e2 I2 S2

C; T ; κ ` case v of inj(i, s) ⇒ e1 else e2

mov eax , |v|C
cmpje [eax], i, `match

mov |s|d
C
, eax

I2

S2

`match : LL(C, [eax 7→ |[i:τ ′]|]) =
mov |s|d

C
, eax

I1

S1

C ` vi : int for i = 1, 2
C; T ; (κ − 3) ` e1 I1 S1 C; T ; (κ − 3) ` e2 I2 S2

C; T ; κ ` if v1 = v2 then e1 else e2

mov eax , |v1|C
cmp eax , |v2|C
jne `else
I1

S1

`else : LL(C, []) =
I2

S2

C ` v : 〈τ0, . . . , τm〉
C ` v : τi C; T ; κ − 3 ` e I S

C; T ; κ ` let πi v := v′ in e
mov eax , |v|C
mov ecx , |v′|C
mov [eax + 4i], ecx
I

S

C ` vi : int for i = 1, 2
C; T ; κ − 3 ` e1 I1 S1 C; T ; κ − 3 ` e2 I2 S2

C; T ; κ ` if v1 < v2 then e1 else e2

mov eax , |v1|C
cmp eax , |v2|C
ja `else
I1

S1

`else : LL(C, []) =
I2

S2

C ` v : ∃α1:k1, . . . , αn:kn.τ ′ (C ⊕ (α1:k1, . . . , αn:kn))[s 7→ τ ′]; T ; (κ − 2) ` e I S

C; T ; κ ` let(α1, . . . , αn, s) = unpack v in e
mov eax , |v|C
mov |s|d

C
, eax

I
S

94 CHAPTER 7. COMPILATION OF LILT

(C(`) = hnd(α1:k1, . . . , αn:kn; Ξ′; Γ′)) (handlers(C) = 0)
C ` ci : ki C |= Ξ′[~c/~α] C ⊕ (Γ′[~c/~α]); T ; (κ − 3) ` e I S

C; T ; κ ` pushhandler `[c1, . . . , cn] in e
push edi
push `
mov edi , esp
I

S

(C(`) = hnd(α1:k1, . . . , αn:kn; Ξ′; Γ′)) (handlers(C) 6= 0)
C ` ci : ki C |= Ξ′[~c/~α] C ⊕ (Γ′[~c/~α]); T ; (κ − 2) ` e I S

C; T ; κ ` pushhandler `[c1, . . . , cn] in e
push `
mov edi , esp
I

S

(handlers(C) = 1) poph(C); T ; (κ − 2) ` e I S

C; T ; κ ` pophandler in e
mov edi , [esp + 4]
sfree 8
I

S

(handlers(C) > 1) poph(C); T ; (κ − 2) ` e I S

C; T ; κ ` pophandler in e
sfree 4
mov edi , esp
I

S

C ` v : τ ′ C[s 7→ τ ′]; T ; (κ − 2) ` e I S

C ` let s = v in e
mov eax , |v|C
mov |s|d

C
, eax

I
S

C ` vi : int for 1 = 1, 2 C[s 7→ int]; T ; (κ − 3) ` e I S

C; T ; κ ` let s = +(v1, v2) in e
mov eax , |v1|C
add eax , eax , |v2|C
mov |s|d

C
, eax

I
S

C ` vi : τi for 1 ≤ i ≤ n C[s 7→ 〈τ1, . . . , τn〉]; T ; (κ − (2n + 2)) ` e I S

C; T ; κ ` let s = 〈v1, . . . , vn〉 in e
push |vn|C
...
push |v1|C
malloc eax , ebx , 4n
pop [eax + 4 · 0]
...
pop [eax + 4 · (n − 1)]
mov |s|d

C
, eax

I
S

7.8. COMPLETE TRANSLATION RULES 95

C ` v : 〈τ0, . . . , τn〉 C[s 7→ τi]; T ; (κ − 3) ` e I S

C; T ; κ ` let s = πi v in e
mov eax , |v|C
mov eax , [eax + 4i]
mov |s|d

C
, eax

I
S

C ` τ ′ = [. . . , j:τj , . . .] : T
C ` v : τj C[s 7→ τ ′]; T ; (κ − 5) ` e I S

C; T ; κ ` let s = inj′τ (j, v) in e
push |v|C
malloc eax , ebx , 8
mov [eax], j
pop [eax + 4]
mov |s|d

C
, eax

I
S

C ` v : [i:τ ′] C[s 7→ τ ′]; T ; (κ − 3) ` e I S

C; T ; κ ` let s = outj(v) in e
mov eax , |v|C
mov eax , [eax + 4]
mov |s|d

C
, eax

I
S

C; T ; (justR) ` e I S

C; T ; (justF) ` e YIELD(F, R) I S

C; T ; (justR) ` e I S

C; T ; (retplus F) ` e YIELD(F, R) I S

96 CHAPTER 7. COMPILATION OF LILT

Chapter 8

Diverse Safety Policies

Most of the thesis up to this point has focused on certification of programs with respect to one
specific safety policy. This is all very well, but it is important to realize that the virtual clock
mechanism and the type theory of TALT-R can be adapted to work with other safety policies,
extending the applicability of this work to many other situations. In this chapter I shall describe a
number of possible modifications to the TALT-R language and their application to a wide range of
safety policies.

8.1 Adaptive Responsiveness

The version of TALT-R presented in detail in earlier chapters takes the maximum yield period
Y to be a fixed number, chosen in advance and “hard-wired” into the type system and into the
certifying compilation and verification machinery. For practical purposes, this lack of flexibility is
likely to be a serious problem. The correct value of Y for optimal performance will vary from one
situation to the next, depending on the cost of the yield operation and the system-specific timing
requirements, among other factors. What is more, the optimal Y may vary over time even for the
same supervisor.

Here is an idea for a flexible solution: each time the program yields, let the supervisor specify
the deadline for the next yield by placing that value in a register before returning control to the
program. The program can then load this value into a clock register and continue with a minor
yielding strategy more or less exactly as described in Section 6.5. Of course, it will not do to allow
the supervisor to specify any number it chooses. In order to write programs that are safe under this
new policy, it must be possible to place clock checks — minor yields — close enough together that
no yield deadline will ever be missed no matter what the supervisor does. Unless there is a lower
bound on the inter-yield times the supervisor can demand, it will be impossible for a nontrivial
program to satisfy the policy. So let the safety policy specify a minimum maximum yield period, Y0,
that is large enough to admit reasonably spaced minor yields.

Syntactically, we change the yield instruction so that it requires a destination. The typing rule
becomes:

(∆, a:N);Ψ; Γ ` d : S(a + Y0) → Γ′ (∆, a:N);Ψ; Γ′{ck :a + Y0} ` I

∆;Ψ;Γ ` yield d I

According to this rule, the value returned by the modified yield instruction is the representation
of the value to which the virtual clock has been set. This number, denoted by the static term a+Y0,
is statically unknown but is clearly at least Y0. Furthermore, assuming Y0 ≥ L + 3, if d = rck then

97

98 CHAPTER 8. DIVERSE SAFETY POLICIES

we have

Γ′{ck :a + Y0} ≤ Γ{rck :S(a + Y0 − L − 3 + L + 3), ck :1 + L + (2 + a + Y0 − L − 3)}.

If we use the unchecked singleton subtraction described in Section 3.3.4 to subtract L + 3 from
rck , which takes one instruction, we obtain the register typing

Γ{rck :S(a + Y0 − L − 3), ck :L + (2 + (a + Y0 − L − 3))} = Γ{mcka+Y0−L−3 7→ L},

i.e., we have set the minor clock to L. Moreover, L can be any number of our choosing that is
less than or equal to Y0 − 3. In fact, choosing L = Y0 − 3 may sometimes make sense: remember
that Y0 is the lower limit of a dynamically varying inter-yield allowance, and so it is probably
much smaller than the Y of earlier chapters. Depending on the application, instances where the
supervisor returns 10Y0 or even 1000Y0 as the actual deadline may be common; if such is the case
there may be little benefit in checking the clock much more often than every Y0 instructions.

8.2 The Engine Abstraction

The engine abstraction is an approach to multitasking and preemption popular in Scheme pro-
gramming. An engine is a computation that can be executed subject to a time limit, which may or
may not be enough for it to finish. This time limit is referred to as the amount of fuel given to the
engine. If the engine finishes its computation before running out of fuel, it returns the computed
value; if it does not, it returns a new engine which, if invoked, will resume the computation where
the old one left off. Haynes and Friedman [34] showed how to implement user-level threads us-
ing engines; Dybvig and Hieb [22] have shown that engines may in turn be implemented using
call/cc and a timer interrupt. Finally, and most interestingly, Dybvig’s Scheme programming
book [21] shows how to implement a form of engines without the help of a system-provided asyn-
chronous timer interrupt. (Sitaram’s online text [63] provides another good introduction to en-
gines for novice Scheme programmers.)

Dybvig’s interrupt-free engine implementation is less satisfying than the alternatives from a
pragmatic standpoint, in that the code executed by an engine is responsible for decrementing a
timer periodically to track its consumption of fuel. (Thus, although Dybvig advertises engines as
an abstraction of “timed preemption,” the implementation he provides is not preemptive at all
and may fail to work properly if engine code is not written in a certain way.) However, there are
easy parallels to draw between the code run by an engine under Dybvig’s system and that of a
TALT-R-certified program.

The code to be executed by an engine is given as a thunk, or a function of no arguments. If that
function returns normally, its return value is the engine’s result. To handle the case of running
out of time, Dybvig’s implementation defines a global variable called do-expire whose value
is a function to be called by the engine’s code upon discovering it has run out of fuel. In turn,
do-expire uses call/cc to create a new engine which, if invoked, will cause do-expire to
return the amount of additional fuel provided to continue the computation; this new engine is then
passed to the continuation of the engine invocation, returning control to the client. In other words,
do-expire suspends the execution of the engine indefinitely and (if it returns at all) returns the
number of “ticks” until it must suspend again. This is exactly the same as the behavior of the

adaptive yield instruction in Section 8.1. What is more, the function responsible for calling
do-expire (called decrement-timer) is precisely analogous to the adaptive minor yield: it

8.3. RUNNING TIME 99

attempts to decrement the amount of fuel remaining, and if this reaches zero, it calls do-expire
and resets the fuel level to the value thus obtained.

One can therefore think of TALT-R as a type system for writing cooperative engines — if yield
is implemented as a call to do-expire , then any well-typed TALT-R program (written using the
adaptive yield) describes an engine that is guaranteed to behave well under a non-preemptive
implementation of the engine mechanism.

8.3 Running Time

In contrast to most previous work on certification of time bounds, the bulk of this thesis has been
devoted to a policy to which any program, appropriately compiled, can be made to conform. It
is only a matter of inserting enough yields, and I have assumed that the yield instruction has
no observable effect from the certified program’s point of view. This assumption is more or less
consistent with an applet-like or mobile agent-like model in which the untrusted code is executed
by a supervisor or host on behalf of some other party. The relationship between an operating
system kernel and most of the user processes running under it is similar in that the supervisor is
not interested in the correctness, or even the performance, of the subordinate processes, and the
safety policy exists to isolate processes from one another rather than to govern any kind of critical
interaction.

In order to conduct a meaningful discussion of applications that require certified bounds on
the total running time of a program or function, it is necessary to distinguish between two broad
subclasses. The first is a time-sensitive client-server model in which the consumer is a host that
executes untrusted code on behalf of other parties. In these systems, the consumer does not care
about the results of the untrusted computation, even though it may care about the time it takes to
compute them. The second class is a plugin-like model in which the supervisor (perhaps an OS
kernel) uses some untrusted code to perform a useful function (perhaps a device driver or packet
filter). It may well be important for reliability that the routines exported by the untrusted plugin
produce meaningful results or effects within a certain amount of time, and it is therefore legitimate
to include such requirements in the safety policy that plugins are expected to obey.

If we remove the yield instruction from TALT-R, then we can certainly devise types for func-
tions that capture the timing policy in either of these two classes of application. For instance, the
TALres-like code type

∀a:N.∀ρ:TD. {eax :B4, esp :({eax :B4, esp :ρ, ck :a} → 0) × ρ, ck :k + a} → 0

(previously encountered in Chapter 6’s discussion of Feeley yielding) describes a function that
takes at most k instructions—and indeed, without the yield instruction, any function with this
type will obey a very strict time bound.

The problem is that the somewhat impoverished logic available for clock reasoning in TALT-R

cannot give this type to any function that contains any loops, recursion, or other nontrivial control
flow. In fact, TALT-R as described seems much less suited to this kind of policy than TALres,
which includes a good deal more abstract reasoning power for proving interesting time bounds.
An obvious way to remedy this shortcoming of TALT-R is to endow it with a more powerful logic,
perhaps similar to that of TALres, and in fact, the version of TALT implemented by Crary includes
some LX-like features similar to those that give TALres its power, which might go a long way
in this direction. It is unknown at this time, however, whether or not “LX-ified” TALT-R would
provide a scalable solution.

100 CHAPTER 8. DIVERSE SAFETY POLICIES

Interestingly, major additions are not necessary in the case of the client-server model. Let TALT-
R be altered such that the halt instruction may be executed at any time, regardless of context.
(The official version of halt may only be performed when the stack is empty.) Then replacing
the yield instruction in the minor yield with a halt produces a code fragment with the same
typing properties as a minor yield. Now, if we compile a program using this modified minor
yield (or “minor halt”), the resulting code is guaranteed to terminate after Y instructions: it either
terminates normally, as the programmer intended, or it runs out of time and halts.

From the consumer’s point of view, this is exactly what was required. Things are a little more
complicated from the producer’s point of view. The best results from this side are obtained by
using as precise a method of “yield” placement as possible, perhaps the precise yield-on-jump
strategy of Section 6.5. If we use such a precise strategy and ignore the overhead of instruction
counting, it is safe to say that if the original program would have finished in under Y instructions
without the minor halts, then the program compiled with minor halts will finish normally and
with the same result. In other words, if we include the timing requirement among the criteria
for correctness and ignore the complications of overhead, we can say that the insertion of minor

halts does not affect the semantics of a correct program. Of course, the type system is no help
when it comes to guaranteeing correctness — but certification is for the consumer’s benefit, not the
producer’s. That the program must produce a useful result after its allotment of Y instructions
is a self-imposed requirement of the producer and is therefore irrelevant to certification. If the
producer can come up with a correct program, and satisfy herself of its correctness by any means
whatsoever, then it can be certified such that the consumer will accept and run it.

Unfortunately, the success of this idea depends on the availability of an “escape route” through
which a program can terminate without producing meaningful results. It may not always be pos-
sible to provide such a convenience: for instance, in plugin-like systems with hard real-time con-
straints, it can be safety-critical that the untrusted code not merely terminate within the allotted
time but provide a useful result. In systems of this kind, the problem of certifying that a compu-
tation produces its results correctly and on time remains as difficult as ever.

8.4 Virtual Versus Real Clocks

All the safety policies discussed so far measure elapsed time by counting instructions. For this
to make sense, it has been necessary to make the tacit assumption that a reasonable upper bound
can be placed on the time any instruction takes to execute, so that multiplying this quantity by the
number of instructions in a sequence may be assumed to provide a reasonable upper bound on the
execution time of the sequence. Perhaps at one time in the history of digital computers that may
have been true, but it represents a tremendous oversimplification of the behavior of present-day
desktop and server microprocessors. The actual execution time of a memory read, for example,
depends upon the state of the memory hierarchy and can vary over several orders of magnitude.
As a result, it is far from simple to produce conservative static estimates of running time that are
precise enough to be useful.

There are two issues that must be dealt with in order to develop a real-time version of TALT-R.
First, certain instructions and certain combinations of operands take more cycles to compute than
others; and second, the execution time of any given instruction is highly variable (which means it
is usually much less than its maximum value). These issues are independent and can be addressed
separately.

8.4. VIRTUAL VERSUS REAL CLOCKS 101

8.4.1 Unpredictability

Because it is so difficult to make usefully precise conservative static predictions of execution time,
it simplifies matters to treat time as utterly unpredictable, except for very loose upper bounds
known in advance. In order to make sense of this, it is necessary to distinguish between the TALT-
R abstract machine and the concrete machine (something like an Intel Pentium) on which programs
will actually be run. For the time being, I continue to assume the existence of a single upper
bound on the execution time of any concrete machine instruction; this amount of time is the virtual
clock unit (or vcu). It follows that any sequence of instructions during which the virtual clock
of the abstract machine decreases from Y to zero takes the concrete machine at most Y vcu to
execute — in fact, it will usually be much faster than that. If the desired safety policy is that the
concrete machine yield at least once every Y vcu, then the expression of that safety policy as the
requirement that the virtual clock remain nonnegative is overly conservative. Most of the time,
when the virtual clock reaches zero, a concrete machine will still have time to perform many more
instructions before yielding. The bad news is that, by assumption, we cannot statically make
any better predictions than the very loose bound of one vcu per concrete instruction. We can,
however, endow the abstract machine with the means to discover the availability of more cycles
after its virtual clock has run out.

Fortunately, most modern computers and embedded microcontrollers possess a reliable way
to measure time. For instance, the Intel x86 family of processors, starting with the Pentium, have
a rdtsc (“read timestamp counter”) instruction that produces the 64-bit number of clock cycles
that have elapsed since the processor was last reset [38, Vol. 2, p. 3-604]. (Unlike the virtual clock
of the TALT-R abstract machine, the cycles of this clock all take the same amount of real time.)
Even in the absence of certification, a program that needs to observe a strict time limit can take
advantage of features like this one to monitor its own progress. It is possible to extend the type
system of TALT-R to certify the correctness of such techniques, guaranteeing that programs obey
the policy even if conformance depends on the clock-checking behavior in a critical way.

Let TALT-R be extended with a new compound instruction check d that computes the real
time remaining until the program’s next deadline (whether for termination or yielding), stores the
result (in virtual clock units) in destination d, and resets the virtual clock to this quantity. Since
check is an abstract machine instruction implemented by a sequence of more than one concrete
machine instruction, the amount by which it decrements the virtual clock will be greater than one;
call this number ccheck. (In other words, let ccheck be the maximum number of vcus it can take to
execute a check instruction on a concrete machine.) The following typing rule describes this new
instruction:

(Γ(ck) = ccheck + t)
(∆, a:N);Ψ; Γ ` d : S(a + t) → Γ′ (∆, a:N);Ψ; Γ′{ck :a + t} ` I

∆;Ψ;Γ ` check d I

This rule is very similar to the one for the adaptive yield in Section 8.1, in that it connects the
integer value returned by the instruction to the value of the virtual clock. Indeed, from the point
of view of the abstract machine, check has almost exactly the same semantics as the adaptive
yield: it resets the virtual clock to an unpredictable quantity and stores that quantity in the given
destination. In this case, however, note that there must be enough time on the virtual clock to
perform the check (it is not a yield, after all, so its cost must be counted). Since the virtual clock
is known to read at least ccheck + t before this instruction, and it costs at most ccheck, it is safe to
assume that it reads at least t afterward.

If the check operation is very cheap, it makes sense to do away with the use of a “clock reg-

102 CHAPTER 8. DIVERSE SAFETY POLICIES

ister” and rely solely on the built-in real clock to keep track of time. Figure 8.1 shows a code
fragment that implements a clock check: assuming it is executed with at least ccheck+2 virtual clock
cycles remaining, CHECKensures that when control reaches the label end there is enough time on
the clock to perform L instructions plus another CHECK. The implementation is analogous to the
minor yield, except that the result of the check instruction is not stored in a “clock register.” If
that result is too small to satisfy the postcondition without yielding, a yield is performed.

CHECK =
// ck: ccheck + 2
check eax
// a: N, eax: S(a + 2), ck: a + 2
subjae eax,eax, (L + ccheck + 2),end
ck: a
yield
// a′ 7→ Y − L − ccheck − 2

// ck: Y = L + (ccheck + 2 + a′)
end:

// a′ : N, ck: L + (ccheck + 2) + a′

// hence ck: L + (ccheck + 2)

Figure 8.1: Code for a Clock Check

8.4.2 Better Static Approximations

It is probably not necessary to assume that the virtual clock unit is the best statically available
upper bound on the execution time of any instruction. Some instructions are faster than others:
a register-to-register mov instruction, for instance, probably has a smaller range of possible run-
ning times than an arithmetic instruction whose destination is a memory location. It is possible
to take advantage of this knowledge simply by discarding the assumption that each and every
concrete instruction corresponds to exactly one tick of the abstract machine’s virtual clock. In
other words, we can redefine the virtual clock unit to be any amount of time we choose (perhaps
most conveniently, we can set it equal to one cycle of the concrete hardware’s clock) and assign
different virtual costs to different abstract machine instructions, or even to different combinations
of operands.

To be more precise, we can assign to each TALT-R instruction i a virtual cost ci. Executing an
i instruction decrements the virtual clock by ci and takes at most ci vcu on a concrete machine;
the timing conditions in the instruction typing rules must be adjusted accordingly. All of the yield
placement strategies described in Chapter 6 still work, keeping in mind that not all instructions
have the same cost. It is still possible to use a clock register, but of course all the constants in the
definitions of the minor clock and minor yield must be adjusted.

8.5 Bandwidth

In client-server or mobile agent systems, safety policies must often address the consumption of
host resources other than time. In particular, if foreign code is permitted to access the network or
file system, the host may be concerned about denial-of-service attacks based on excessive use of

8.6. STACK 103

these resources. The relevant policy in such situations may be one of bandwidth limiting, which
can be accomplished by setting a minimum time that must elapse between calls to certain resource-
related operations (such as disk reads or network sends). “Time” might mean real time, as in the
previous section, or might be measured in instructions as in most of this thesis.

A bandwidth-limiting policy, expressed as a lower bound on the time between events, is es-
sentially the dual of the responsiveness policy of TALT-R which is expressed as an upper bound.
This suggests that a few minor changes to the type system might be sufficient to turn TALT-R into
a theory for bandwidth certification. Where TALT-R had a designated “yielding” operation, let the
bandwidth-certifying theory have a designated “consuming” operation; instead of a maximum
yield period Y , specify a minimum “rest period” R that must elapse between consuming opera-
tions; and last but not least, in the register file subtyping rule, reverse the sense of the inequality
constraint on the clock, thus:

∆ ` t ≤ t′ true ∆ ` τr ≤ τ ′
r for each register r

∆ ` {eax :τax, . . . , ebp :τbp, esp :τsp, ck :t} ≤ {eax :τ ′
ax, . . . , ebp :τ ′

bp, esp :τ ′
sp, ck :t′}

In this modified system, the virtual clock represents the amount of time that must pass before
a consume operation is safe. Since it is safe to wait longer, this virtual clock decrements with
every instruction until it reaches zero, then (rather than getting stuck) remains zero until it is reset
to R by a consume operation. As in TALT-R, the ck term in a register file type is a conservative
approximation of the virtual clock (but “conservative” here means the opposite of what it means
in TALT-R): because of the constraint premise in the rule above, a register typing Γ describes a
machine state in which the virtual clock is at most Γ(ck).

Responsiveness involves an upper bound on elapsed time and thus requires conservatively
overestimating the time on the clock; bandwidth involves a lower bound and requires conserva-
tively underestimating the clock. A tempting question is whether it is possible to accomodate
a policy that places both an upper and a lower bound on the time between successive events.
In order to accomplish this we must no longer allow unrestricted over- or underestimation; the
subtyping rule must not allow any variance in the clock term:

∆ ` t = t′ true ∆ ` τr ≤ τ ′
r for each register r

∆ ` {eax :τax, . . . , ebp :τbp, esp :τsp, ck :t} ≤ {eax :τ ′
ax, . . . , ebp :τ ′

bp, esp :τ ′
sp, ck :t′}

(For convenience, rewriting of the clock term is still allowed, but the old and new terms must
denote the same number.) All imprecision in static clock reasoning must now be accounted for
explicitly using guarded types and singleton arithmetic. I have not investigated the implications
of such policies for compilation of timing-ignorant programs.

8.6 Stack

Ordinary TALT does not provide any protection against stack overflow. The implementation relies
on the operating system (more specifically, the virtual memory system) to detect excessive stack
allocation and terminate the program, and the safety policy reflects this by specifying that any
stack-growing instruction may fail and send the machine to the “halt” configuration. It would be
nice to have a type system that rules out stack overflows, so that neither the safety policy nor the
runtime system would need to account for the possibility of that error.

104 CHAPTER 8. DIVERSE SAFETY POLICIES

(Γ(fss) = n + t)
∆; Ψ; Γ{esp : nsn × Γ(esp), fss:t} ` I

∆; Ψ; Γ ` salloc n I

∆ ` Γ(esp) ≤ τ1 × τ2 ∆ ` τ1 : Tn
∆ ` τ2 : TD ∆; Ψ; Γ{esp :τ2, fss:n + Γ(fss)} ` I

∆; Ψ; Γ ` sfree n I

Figure 8.2: Typing Rules for a Stack Usage Policy

We can adapt TALT-R to monitor stack space usage if we replace the virtual clock with a virtual
counter representing the number of words of available (unused) stack segment memory. Con-
cretely, we change the name of the ck pseudoregister to fss (“free stack space”), so that register
file types look like

Γ ::= {eax :τax, . . . , ebp :τbp, esp :τ, fss:t}

One key difference between space and time is that not every instruction consumes any stack
space; in this case, it is only the stack-related instructions call , push and salloc that cause
the stack to grow and hence should cause fss to decrease. Another important difference between
space and time is that the stack space “consumed” by one of the instructions just mentioned can be
recovered by a ret , pop or sfree instruction. The typing rules for non-stack-related instructions
are exactly the same as in ordinary TALT; the rules for stack-related instructions are shown in
Figure 8.2.

It is sound to consider a register file type Γ to be a subtype of Γ′ if Γ′(fss) ≤ Γ(fss). Not
surprisingly, this is the same as the rule for time in a responsiveness policy: it is always safe to
forget about some of an available resource.

Clearly, in order for this static tracking of stack availability to work, there must be some equiv-
alent of a minor yield: it must be possible for a running program to determine how much stack
space remains in order to know whether it has run out. There can be no precise equivalent of a
yield , since the machine does not have an unlimited amount of virtual memory or an unbounded
address space and hence one cannot always make room for more stack allocation. Something anal-
ogous to the check instruction from Section 8.4, however, does make sense: we can have a new
instruction, call it sscheck (“stack segment check”), that returns the number of bytes remaining
below the stack pointer. A sequence of instructions similar to the clock check in Figure 8.1 can
compare this number to the amount the program wishes to allocate, and halt (or otherwise es-
cape) if it is too small. The sscheck instruction itself is very simple to implement: it only needs
to subtract the address of the beginning of the stack segment from the address stored in the stack
pointer register.

8.7 Heap Allocation

Copying garbage collectors typically support allocation of memory by providing programs with
an allocation area in which the mutator can write new objects. When this region of memory is full,
the collector is notified and, after some work, returns a pointer to a new, empty allocation area.
Since new objects are written into a contiguous block of memory, there is no need to consult or
modify a “free list” with each allocation, making this interface very efficient for languages and
programs that create new heap objects frequently.

In noncertified systems that use this protocol, the mutator keeps track of two pointer values to
control allocation: the allocation pointer (ap), which points to the first unused word in the allocation

8.7. HEAP ALLOCATION 105

∆;Ψ;Γ ` o : S(t)
∆;Ψ; Γ{faa :t} ` I

∆;Ψ;Γ ` gc o I

(Γ(faa) = n + t) ∆;Ψ; Γ{rd:nsW, faa :t} ` I inits rd:mbox(nsn)

∆;Ψ; Γ ` malloc rd, n I

Figure 8.3: Typing Rules for a Heap Allocation Policy

area, and the limit pointer (lp), the address of the end of the allocation area. At any given time,
there are lp − ap bytes available for allocation. To make space for an n-byte object, the mutator
must first make sure that lp − ap ≤ n. If this is not the case, then the garbage collector is called,
and returns two new pointers defining a new allocation area that is guaranteed to be big enough.
The mutator saves the value of ap, which will be the address of the new object, and updates ap to
ap + n.

If a program must allocate many objects in rapid succession, it is wasteful to perform the
comparison between ap and lp for every object; compilers therefore attempt to coalesce these
operations, checking once to ensure the availability of space for several objects. This makes code
shorter, saves time, and cuts down the number of code points from which the collector may be
called, which can be helpful for tag-free collectors that must be able to parse the stack at every
such point [68]. On the other hand, this practice requires a more complex safety policy than the
malloc pseudoinstruction of TALT and TALT-R.

Creation of heap objects in a contiguous arena is in many ways analogous to stack allocation,
and a type system similar to the one for stack segment management in the previous section can
also capture the idiom of coalesced allocation pointer checks. Instead of ck or fss , let the register
file type specify a term for faa (“free allocation area”), the number of unused bytes left in the
allocation area. The two important instructions for manipulating the allocation area are gc , which
causes the creation of a fresh allocation area of the requested size, and malloc . Typing rules for
these instructions under such a policy are shown in Figure 8.3. The rule for gc is analogous to
TALT-R’s rule for yield : it has no observable effect but to reset the amount of free space to the
quantity specified by the operand (terminating the program if this is not possible). The malloc
rule is essentially the same as in TALT or TALT-R,1 except that it consumes n bytes when allocating
an object of size n.

Petersen et al.[58] have described a type theory for memory allocation based on ordered linear
logic. In their calculus, called λord, object creation is a three-step process: reservation creates a
block of uninitialized memory, which then undergoes initialization, and allocation makes the new
object available for use by the program. The object-creation area of the heap is divided into three
parts: the free space that has not been touched in any way, the frontier, which is space that has been
reserved but not allocated, and the portion that contains allocated objects. The frontier is treated
specially by the type system, in that it allows updates that change the types of locations (from ns
to useful types); the ordered linear typing discipline applied to the frontier prevents aliasing so
these updates can be sound.

Petersen et al. treat the reservation step as a primitive that ensures that the frontier has the
requested size, calling the garbage collector if necessary. To be more precise, it compares ap (which
points to the boundary between used space and the frontier) to lp (which points to the end of the

1Although this rule is not discussed at all in this thesis – see Crary’s TALT papers [13, 14].

106 CHAPTER 8. DIVERSE SAFETY POLICIES

free space) and notifies the collector if the difference is less than the requested size n. Having
made sure there is enough free space to accomodate the request, it then “relabels” the first n bytes
following ap as the new frontier; subsequent instructions can perform initialization in this region.
A TALT-R-like system as described above could expose even more of the fine structure of allocation
by separating the limit check (analogous to a minor yield or to sscheck), the call to the garbage
collector (the gc instruction just described), and the creation of a frontier.

8.8 Chapter Summary

Although most of this thesis has been focused on TALT-R, a type system for certifying conformance
to a specific responsiveness policy, small adjustments to this system suffice to enable certification
of a wide variety of resource management policies, both timing-related and not. Some of these
changes address practical shortcomings of TALT-R, such as the need to commit to a specific yield
latency as part of the safety policy or the imprecision of instruction-counting as a measurement
of time. Others point the way to certifying bounded running time in client-server applications,
bandwidth limits, stack usage and proper interaction with a garbage collector.

Chapter 9

Conclusions

In this chapter, I present the results of some performance measurements of my compiler and dis-
cuss some of their implications. I go on to mention some avenues for future research in this area.
Finally, I present my overall conclusions.

9.1 Performance Evaluation

As a preliminary performance experiment, I measured the effects of my yielding strategies on
four different programs. The benchmarks range in complexity and qualitative behavior: msort
applies a polymorphic merge-sort procedure to a pseudorandomly-generated linked list of inte-
gers; qsort applies quicksort to an array; comb computes a row of Pascal’s triangle; and tempo
is a port of the grid-based chess player developed by the ConCert project. Figure 9.1 shows the
impact on execution time: for each benchmark the graph shows the execution time using Feeley
yielding and Feeley polling, normalized with respect to the running time in ordinary TALT with
no yielding requirements. The test programs were linked against a version of the runtime system
in which the yield operation does nothing other than count the number of times it is called; thus
the increases in running time are due only to function call overhead and/or clock register opera-
tions. All timing experiments were performed on a 730 MHz Pentium III desktop with 384 MB of
RAM running Linux. As the chart shows, Feeley yielding slowed down programs by up to 67%,
while Feeley polling never altered execution time by more than 6% in this experiment.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

msort qsort comb tempo

(t
im

e
 /

 b
a

s
e

 t
im

e
)

base

polling

yielding

Figure 9.1: Normalized execution time (Y = 1 billion, L = 500, E = 100, H = 50)

107

108 CHAPTER 9. CONCLUSIONS

These speed measurements clearly show that pure Feeley yielding without dynamic instruc-
tion counting is a losing strategy, and they seem to show that Feeley polling has a reasonably small
effect on performance. This latter result, however, should be taken with a grain of salt, as there are
many confounding factors. First of all, it is not fair to compare execution times between programs
that use any particular yielding strategy and programs that perform no yields at all. The “base”
version of each microbenchmark against which the others were compared is not safe with respect
to the TALT-R yielding policy. Some of the difference between the base speed and the speed with
Feeley polling is presumably “the price you pay for safety” and cannot be eliminated in any safe
version of the program. On the other hand, all three versions of each program were produced
by essentially the same compiler, and that compiler was a very naı̈ve prototype that performed
essentially no optimization and stored all temporary results on the stack. Since it did not do even
the most basic kind of register allocation, it was completely insensitive to the increase in register
pressure that dynamic instruction counting should have created. In other words, improving the
code quality of the compiler may well have a greater impact on the non-yielding program than on
the Feeley polling program, revealing my observed 6% differences as artificially small.

An important issue faced by the implementation butImplicit Y/s Explicit Y/s

msort 1 500 000 0.9
qsort 28 16
comb 0.77 13
tempo 210 000 0.03

Table 9.1: Yields under Feeley Polling

not apparent in my discussion of MiniTALT-R up to now
is the timing behavior of TALT-R’s malloc instruction,
which allocates space in a garbage-collected heap. It is
difficult to predict how long an invocation of malloc
will take: those that trigger a garbage collection run much
longer than those that do not. For my initial experi-
ments I assumed that the runtime system would con-

servatively yield at every allocation. Table 9.1 shows that for msort and tempo , which do a lot
of allocation, these “implicit yields” dominate the “explicit yields” introduced by the compiler:
msort performs some 1.5 million yielding operations per second on average, only 0.9 of which
are yield instructions. The qsort and comb benchmarks were carefully written to allocate as
little as possible, and perform only a constant number of implicit yields per run.

These results clearly indicate a need for a better treatment of allocation. One possibility is to
provide a version of malloc that has access to the program’s clock register and yields only when
needed. This “smart malloc ” poses no problems in principle, but the implementation effort
required is nontrivial and I have not attempted it. To estimate the performance improvement, I
modified our implementation to assume a fixed cost for malloc (to simulate fast, non-collecting
allocations) and instrumented the runtime system to count the number of garbage collections,
which presumably would still have to yield. Table 9.2 shows the estimated yield rate for the
smart malloc along with the rates we measured for Feeley yielding and polling. In all cases, the
smart malloc reduces the total yield rate to less than one hundred yields per second. All of the
remaining experiments discussed in this chapter use the simulated smart malloc .

FY FP FPsm (est.)

msort 3.5 × 106 1.5 × 106 6.3 × 100

qsort 1.8 × 107 4.4 × 101 2.3 × 101

comb 1.7 × 107 1.4 × 101 1.3 × 101

tempo 6.6 × 106 2.1 × 105 6.4 × 101

Table 9.2: Yield Frequencies (Yields/sec)

9.1. PERFORMANCE EVALUATION 109

Feeley Polling (L=500,E=100,H=50)Feeley Yielding (E=100,H=50)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

tempo comb msort qsort

Benchmark

(t
im

e
 /

 b
a
s
e
 t

im
e
)

base

1G

100M

10M

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

tempo comb msort qsort

Benchmark
(t

im
e
 /

 b
a
s
e
 t

im
e
)

base

1G

100M

10M

T
o

ta
l

y
ie

ld
 r

a
te

 (
y
/s

) tempo

comb

msort

qsort

base 1G 100M 10M

Yield policy

10-1

100

101

102

103

104

105

106

107

108

T
o

ta
l

y
ie

ld
 r

a
te

 (
y
/s

) tempo

comb

msort

qsort

base 1G 100M 10M

Yield Policy

10-1

100

101

102

103

104

105

106

107

108

Figure 9.2: Effect of Y on Yielding Performance

Next, I looked at the effect of the policy yield period Y on the observed yield rate and running
time of the benchmark programs. Each program was compiled for three different safety policies,
with Y equal to 10 million, 100 million and one billion, assuming a smart malloc with a non-
collecting allocation cost of 400 instructions. Figure 9.2 shows the results. The graphs on the left
are for Feeley yielding, and those on the right are for Feeley polling. The yield frequency graphs
show “base” values obtained by counting the number of garbage collections performed by non-
yielding versions of each program and dividing by the elapsed time; since garbage collections are
counted as implicit yields, this gives an idea of the amount of programmatically necessary yielding
in each benchmark. As the figure shows, the performance of Feeley yielding is insensitive to the
choice of Y . In fact, for each program, the three different yielding versions performed the exact
same number of yields per run, suggesting that the compiler generated exactly the same code
regardless of Y . This is not surprising, since even the smallest value of Y tested is much, much
larger than the longest basic block length in any of the programs. For Feeley polling, the yield
rate of the programs seemed to be more or less inversely proportional to Y , as one would expect.
The overhead introduced by Feeley polling was also greater for smaller values of Y , but was still
never measured to add more than 10% to the running time of any benchmark.

The next experiment, whose results are shown in Figure 9.3, looked at the effect of the minor
yield period L on yielding performance. As before, the “base” numbers in both graphs were
obtained by measuring the running time of non-yielding versions of the benchmarks and counting
the number of garbage collections they performed. The total yield frequencies and normalized
running times of the benchmarks were measured for versions compiled with Feeley polling with
minor yield periods of 500, 700 and 1000 instructions. The impact of this parameter on running
time is small and does not exhibit any universal trend; however, the graphs on the left clearly show
that yield frequency increases as L increases. This effect is probably a different manifestation of

110 CHAPTER 9. CONCLUSIONS

Effect of L on Running Time

0

0.2

0.4

0.6

0.8

1

1.2

msort qsort comb tempo

Benchmark

(t
im

e
 /

 b
a
s
e
 t

im
e
)

base

tuned

L=500

L=700

L=1000

Effect of L on Yield Frequency

0

50

100

150

200

250

300

350

base tuned L=500 L=700 L=1000

Minor Yield Period

T
o

ta
l

Y
ie

ld
 F

re
q

u
e
n

c
y
 (

y
/s

)

msort

qsort

comb

tempo

Figure 9.3: Effect of L on Yielding Performance (Y =100M, E=100, H=50)

the same phenomenon that accounts for the insensitivity of the direct Feeley yielding strategy to
changes in Y : most basic blocks in most programs are sufficiently shorter than 500 instructions
that the compiler places minor yields at exactly the same program points for each of these values
of L, so the same number of minor yields occur per run of the program. Since each minor yield
decrements the clock register by about L, larger values of L permit fewer minor yields per major
yield, leading to a proportional increase in major yields. This indicates that smaller values of L
are better than large values; unfortunately, it would have been very inconvenient to test values of
L smaller than 500, since the assumed cost of the simulated smart malloc was 400 instructions.

Instead, I tested the hypothesis that the minor-to-major yield ratio was the determining factor
of yield frequency by hand-tuning the minor yields in a select few extremely commonly used
functions in the library shared by all TALT-R programs.1 The tuning consisted merely of adjusting
the quantity subtracted from the clock register in each minor yield so that it corresponded exactly
to the requirements of the ensuing basic block (and correcting the relevant typing annotations). No
minor yields were added or removed, and no other changes were made to the code. Non-tuned
portions of the program were identical to those compiled with L = 500. The performance figures
for the resulting “tuned” versions of the benchmarks are shown alongside the others in Figure 9.3.
As the graphs show, this improvement of the precision of minor yielding, even when applied
to a rather small portion of each program’s TALT-R code, produced noticeable improvements in
yield frequency for all four benchmarks. I take this as evidence that any serious implementation
of yielding with TALT-R should use the precise yield-on-jump strategy described at the end of
Chapter 6 rather than a simple minor yield strategy that treats all blocks in a program the same.

Figure 9.4 shows the results of a very similar experiment to measure the effect of the Feeley
function “cost” E on yielding performance. Benchmarks were compiled using function costs of 25,
50, 80 and 100 instructions; the minor yield period was 500. The results are mixed: the comb and
qsort benchmarks, which use arrays and iteration more than they use allocation or recursion,
seemed to perform best with E equal to 80. For tempo , probably the benchmark most representa-
tive of typical Popcorn code, 100 was better. The msort benchmark yielded infrequently regard-
less of E. These results are less impressive than the effect of Y or of L, probably because there
is a smaller range (zero to L) over which E can be varied; the fact that they are highly program-
dependent suggests that a compiler capable of varying the value of E between functions (which,
remember, requires interprocedural flow analysis) would perform better than one that treats all
functions the same. Again, using precise yield-on-jump instead of a Feeley strategy is perhaps the
easiest solution.

1Namely, the functions implementing multiplication and division in terms of shifts and addition, needed to work
around the absence of the native instructions for these operations in the implementation of TALT.

9.1. PERFORMANCE EVALUATION 111

Effect of E on Running Time

0

0.2

0.4

0.6

0.8

1

1.2

msort qsort comb tempo

Benchmark

(t
im

e
 /

 b
a
s
e
 t

im
e
)

base

E=25

E=50

E=80

E=100

Effect of E on Yield Frequency

0

50

100

150

200

0 20 40 60 80 100 120

Feeley Function Cost

T
o

ta
l

Y
ie

ld
 R

a
te

 (
y
/s

)

msort

qsort

comb

tempo

Figure 9.4: Effect of E on Yielding Performance (Y =100M, L=500, H=50)

A major confounding factor in these experiments is that they were run under Linux, a tradi-
tional preemptive kernel; the preemption of the processes by the kernel was completely unrelated
to their executing the trivial stub implementation of the yield instruction. For the measurements
shown in Figure 9.5, I replaced that dummy yield with one that yielded the CPU using the Linux
sched yield system call. Each program tested was run in parallel with a CPU-hungry “drone”
process that also yielded in a manner consistent with the TALT-R policy.2 The figure shows, for
three choices of L and for “tuned” versions produced as described earlier, the elapsed time and
the percentage of that time allocated to the benchmark process as measured by the Linux time
utility. The base times with respect to which the elapsed times are normalized were measured
by running a non-yielding version of the benchmark in parallel with a non-yielding version of
the drone — that is, by allowing the Linux kernel to manage the competition between them in its
usual way. The qsort benchmark was not used in this experiment because it did not run long
enough (less than half a second) for the CPU allocation measurements to be meaningful.

As expected, benchmark processes compiled with larger values of L, which produced higher
yield rates in the experiment described earlier, took longer to run and fared less well in competi-
tion with the drone process. Also predictably, the msort benchmark, which tended to yield the
least often in other experiments, did the best when competing for the CPU, with the hand-tuned
version even out-competing the drone; comb, which generally yielded more often, performed the
worst. What is also worth noting is that the impact of L on elapsed time was much greater in this
experiment, where each major yield forces a context switch, than in the earlier experiment where
the yield consisted of a function call and little else.

It does seem discouraging that explicit yielding seems to produce such inequitable allocation
of the CPU. Fortunately, I do not think this necessarily represents an inherent flaw in the idea of al-
lowing processes to participate in scheduling. Rather, one must remember that the Linux kernel is
accustomed to being in complete control of the allocation of time to processes. The sched yield
call defeats this careful design: it unconditionally yields the remainder of the current process’s
time slice, and if another runnable process exists, the caller is guaranteed to be suspended. A
kernel that expected processes to yield rather than be preempted would have to recognize that
their yielding patterns would probably be erratic and differ between programs, and would have
to take this into account when scheduling threads for execution. The yielding operation provided
by such a kernel would represent an opportunity for a task switch but would not force one if the
calling process deserved more time.

2To be precise, the drone was a small C program, not requiring much memory, with an inner loop that performed
some integer arithmetic and yielded every m iterations, where m was calculated such that yields occurred on the order
of every Y/2 instructions.

112 CHAPTER 9. CONCLUSIONS

Running Time

0

1

2

3

4

5

6

7

8

9

comb tempo msort

Benchmark

E
la

p
s
e
d

 T
im

e
 (

s
)

base

tuned

500

700

1000

CPU Allocation

0%

10%

20%

30%

40%

50%

60%

tuned L=500 L=700 L=1000

Minor Yield Period

%
 C

P
U comb

tempo

msort

Figure 9.5: Effect of L on Competition (Y =10M, E=100, H=50)

Another flaw in this attempt to simulate a cooperative scheduling environment is that even
though both the drone and the benchmark process in each trial yielded the CPU very frequently,
each of them was still vulnerable to preemption between yields, making the actual impact of
context switches difficult to measure. Creating the necessary testing environment to explore the
true effects of static enforcement on cooperative scheduling and compare the results to preemptive
scheduling would be a significant undertaking.

9.2 Discussion and Future Directions

In this section, I discuss some of the interesting features of the work I have done that suggest
potentially worthwhile topics for further study. The areas I see for potential future work in this
area fall into two categories: those that amount to improving the particular safety policy I have
studied and system I have implemented, and those that further explore the potential capabilities
of the techniques I have used here.

9.2.1 Improvements to Implemented System

In spite of the groundwork laid by earlier researchers at CMU and elsewhere, writing a type-
preserving compiler from scratch is still far from easy, even for a very simple source language.
The level of sophistication I was able to achieve in the time allotted to me for this project was quite
low. Many improvements are needed if the system I built is to be useful, or if measurements of its
performance are to be taken seriously. Most of these improvements, however, are not particularly
interesting research avenues.

TALT External Syntax Quite apart from the challenges of timing certification, I found the task of
generating well-typed EXTALT output from my compiler surprisingly difficult. The main culprit
was “coercions”, the reified subtyping derivations with which operands must often be annotated.
EXTALT’s coercions tend to be verbose, repetitive and finicky, especially those that apply to the
type of the stack. Nearly every control transfer instruction output by my compiler must coerce
the stack so that its type matches up exactly with the type expected by the target code block.
Since the stack type is a long, right-associated product of types most of which are not changing,
the necessary coercion is a long, right-associated “product” of coercions most of which are the
identity (and often, those that are not the identity are the forget coercion from some type to

9.2. DISCUSSION AND FUTURE DIRECTIONS 113

nonsense). The structure of the coercion must mirror the structure of the stack type exactly, but
failures to do so often result in almost incomprehensible error messages. Coercions that must
“reassociate” a large product of types (e.g. turn (τ1 × (τ2 × (· · · × τn))) into (((τ1 × τ2)× · · ·)× τn))
are also extremely annoying to generate.

Another locus of painful coercion is the compilation of Lilt’s case construct for eliminating
variant types. Since Lilt’s variants can have any number of summands but TALT’s union types
are binary, the coercions witnessing the subtyping premises of the cmpjcc instruction typing rule
(not to mention the coercions required to give the case subject a binary union type in the first
place) are large and hard to get right. All in all, I estimate that more than half of the time it took
to write the back end of the compiler was spent debugging coercions. Something must be done
about this.

Some of the problems I encountered could be solved by adding support for some set of non-
trivial utility coercions to the front end of the EXTALT assembler. These could take care of things
like reassociating large products, permuting large unions or intersections, and so on. Allowing
EXTALT programs to contain “coercion definitions” akin to type definitions would also probably
result in shorter, more readable assembly code. But it is not clear whether such techniques would
be particularly useful for the problem of stack coercions. It just seems unfair that, although IA-32
programmers are all but forced to treat the first several words of the stack as if they were registers,
the EXTALT elaborator can automatically insert forget coercions for actual registers but not for
stack slots. I predict that very few people will be willing to program in EXTALT as long as this is
the case.

Responsiveness Implementation Improvements Some interesting questions are raised by the
effect the malloc operation was observed to have on yield rate earlier in this chapter. In partic-
ular, the “smart malloc ” simulated in the experiments is fictitious; the question of how such a
thing might be implemented reveals a larger issue, namely: When separately compiled program mod-
ules and libraries must cooperate on time management, what protocols should govern the interfaces between
them to maximize both flexibility and performance? An even broader issue is, how far do the implications
of a particular choice of yielding strategy reach? Can the decision to use, say, Feeley versus call-return
yielding, or the decision to reserve a register for instruction counting be viewed as an implemen-
tation detail of a module and hidden behind a timing-agnostic interface? Or does the abstraction
boundary introduce an “impedance mismatch” that hurts performance unacceptably?

A related question is whether the Feeley placement strategy (whether for direct yield place-
ment or minor yield placement) discards too much useful information by assigning all functions
the same fictitious “cost”. Recall that the number E is an upper bound on three quantities: the
“cost” of a function as seen by callers, the number of instructions between function entry and the
first yield, and the number of instructions between the last yield and function exit. For many
functions, the latter two are not very sensitive to the initial value of the clock; thus rather than
choosing a single cost for all functions ahead of time, one should usually be able to compute the
cost for each function in a program separately. A whole-program analysis would be needed in
order to take advantage of this more precise information — is it worth it? Only further study can
answer that question.

When I began my investigation of responsiveness certification, it was expected that simple
strategies like Feeley yielding and dynamic checking would be insufficient to produce acceptable
performance. My performance measurements seem to suggest that this is not the case, but as I
suggested in my discussion of those results, it is possible that an aggressive optimizing compiler
would suffer more from the cost of dynamic checking than my naı̈ve compiler. If this is the case,

114 CHAPTER 9. CONCLUSIONS

then further improvement of the constraint reasoning in TALT-R is called for, along with investi-
gation of program analyses to detect opportunities for moving, hoisting or eliminating yields or
clock checks. The static computation typical of LXres [18] is a good place to start.

The yield placement strategies I have studied were all designed with the goal of insulating
programmers from the issue of responsiveness. This is an important thing to be able to do, be-
cause it allows experienced programmers who are accustomed to a preemptive setting (where
the operating system insulates them from responsiveness) can also work on certification-based
systems without having to learn anything new. More importantly, it means that code written
for traditional operating systems (in type-safe languages) will be portable to certification-based
ones — it will only need to be recompiled. Finally, the ability of TALT-R to account for dynamic
instruction-counting schemes (like my minor yields) means that the difficulty of porting compil-
ers to a certification-based setting is also small and need not increase their complexity by much.
Realistically, however, the benefits of certification over preemption for timing policy enforcement
cannot be fully realized without help from programmers. Here, again, the work of Crary and
Weirich on PopCron and TALres may provide a useful starting point.

9.2.2 Applicability

Real-Time Programming An obvious application for a system that certifies timing properties
is in real-time programming. As discussed in Chapter 8, TALT-R could in principle be modified
to certify policies based on real time rather than on instruction counting. The suggestions for
doing this given in that chapter, however, were mostly speculative. Further study is needed to
determine whether the level of imprecision resulting from conservative estimates of instruction
cost or the cost of frequent checks of the real clock is too great for such an approach to be practical.
A major obstacle to improving the precision of static reasoning about time is, of course, that the
cost of any instruction is highly dependent on the dynamic context in which it is executed, that is,
the recent history of the process that determines the state of the processor pipelines, caches and
virtual memory. It is conceivable that usable levels of precision can only be achieved by reasoning
about the execution time of sequences of instructions rather than individual ones. How to integrate
such reasoning into a type system is, to my knowledge, an open problem.

Software-Based Process Isolation I have hinted throughout this thesis that the responsiveness
policy of TALT-R is the kind of timing policy that an operating system kernel might want to en-
force, but I have not put this claim to the test. It will not be clear without further experimentation
just how realistic a yielding policy like TALT-R’s is for something so central to everyday comput-
ing life as the process scheduler of an operating system. More expressive policies may be needed
in order to create the right balance between safety and flexibility that preserves system reliability
without compromising efficiency.

This thesis has been primarily concerned with the type-theoretic and language-related issues
involved in certifying responsiveness, and consequently has largely ignored the concrete seman-
tics of the yield operation. Where concrete intuition has been required, I have assumed that
“yielding” necessarily always involves a context switch and/or interprocess communication —
but this is nowhere reflected in the operational semantics of the TALT-R abstract machine or the
static semantics of TALT-R. From the point of view of the formalism, the only thing that matters
about the yield instruction is that it must, as a matter of safety, be performed periodically with
a certain frequency. Any such operation can easily take the place of yield without changing the
type theory — but the performance characteristics of that operation probably will affect may im-

9.3. CONCLUSION 115

plementation decisions, including the choice of “yield” placement strategy. Fortunately, TALT-R

is flexible enough to support several reasonable choices and extensible enough to support many
more.

Indeed, from an efficiency point of view, forcing processes to surrender control of the machine
after every Y instructions (or nanoseconds) is not a very good policy. It might very well be bet-
ter, if the hardware supports it, to require merely that a program examine some flag periodically,
and yield control whenever it finds the flag set. This is the behavior widely known as “polling”,
although I have used that word in this thesis for something slightly different. Although their typ-
ing properties are identical, this “poll” operation differs from a true yield in that it is fast in the
common case: usually, no event will have occurred to set the flag, so no context switch will be
needed and the program will be able to proceed. In fact, it was for this kind of polling that Feeley
designed his placement strategy [23]. The positive results of his experiments indicate that direct
placement of polling operations using the Feeley strategy should be a viable approach to compi-
lation of timing-ignorant programs in this setting. (In particular, since the poll operation is fast,
one would expect little or nothing to be gained from dynamic instruction counting using a clock
register.) Importantly, this is no different from TALT-R with yields as far as typing, certification
and safety are concerned; it has only to do with mapping the TALT-R abstract machine to concrete
hardware in the most useful way possible for the application at hand.

The difference between yielding and polling (in this more usual sense) is a manifestation of
a deep question opened by the availability of certification-based enforcement for timing policies,
namely: Who should decide when a process yields? More broadly, what should the respective roles of the
operating system and a user process be in managing resources? The answer is not obvious: on the one
hand, only the operating system knows enough about the state of all the computer’s hardware and
software to know when a yield is needed; on the other, only the user process knows when a yield
will disrupt it the least. If user processes are allowed to yield on their own terms, the cost of saving
useless state can be reduced and yields can be arranged not to fall in the middle of cache-sensitive
inner loops; but unless they are guaranteed to yield soon enough after a yield becomes necessary,
the OS will have no choice but to incur the cost of preemptive management. The tradeoffs between
preemptive and non-preemptive scheduling, not unknown territory to operating systems experts,
must be reexamined in light of the fact that with certification, preemptive systems no longer have
a monopoly on stability, reliability or fairness.

9.3 Conclusion

The world of code certification is at a turning point. We have more or less mastered the type
theory, compilation techniques and logics needed to ensure a baseline of type and memory safety
in small to medium-sized chunks of untrusted code. The focus of much of the work so far has
been on mobile code applications, including applets, mobile agents, and large-scale distributed
computing; these applications have in common the fact that they run on top of modern desktop
or server operating systems on which the host environments can rely for many aspects of safety,
such as resource usage, that the certification does not cover. Our attention is now turning toward
increasingly expressive safety policies and increasingly powerful certification technologies that
can take over more and more of these duties traditionally assigned to operating systems.

There are a number of rewards to be found just around this bend. Just as statically type-safe
programming languages admit more compiler optimizations and allow programs to run with less

116 CHAPTER 9. CONCLUSIONS

safety-related overhead than dynamically typed languages, so too can static enforcement of safety
policies by code certification improve the performance of software. By making it safe to lower the
hardware-based barriers between processes, between components of a process, and even between
the kernel and user processes, static enforcement creates the potential for tighter coupling between
components, resulting in leaner and more efficient computer systems. This potential, if realized,
will benefit not only conventional desktop and server systems but also the growing number of
smaller devices, such as mobile phones, handheld computers and smart cards, for which power
and memory are still scarce resources.

I have argued in this thesis that timing policies play critical roles in the security and reliability
of real systems. If we are to take full advantage of the power of certified code, we must be able
to enforce such policies statically. To show that this is possible, I have studied the certification
of an extremely common timing policy that I call responsiveness. I have exhibited some strategies
for compiling programs in a general intermediate language so that they satisfy this policy, and I
have shown that a surprisingly simple type theory suffices to prove that programs compiled using
these techniques are responsive. My theory, called TALT-R, fits well into an existing certification
framework and is easily extended to a wide range of timing and resource management policies.
I hope that the work I have described here constitutes some first steps toward static enforcement
strategies for these policies that can truly compete with the currently popular dynamic approach.

Appendix A

Complete MiniTALT Semantics

Where possible, the inference rules in this appendix are labeled with the names of the correspond-
ing rules in the Twelf formalization of TALT type safety; these labels are in typewriter font .
Due to differences between MiniTALT and full TALT, and between the media of typeset inference
rules and Twelf code, this correspondence is rough. The Twelf version of a rule may differ signifi-
cantly from that presented here. Rules in this appendix that do not correspond to anything in the
Twelf codebase are given ad hoc names which are written in SMALL CAPS.

A.1 Static Semantics

A.1.1 ∆ ` c : K, ∆ ` Γ Static Term Formation

((α:K) ∈ ∆)

∆ ` α : K
(KOF VAR)

∆ ` ns i : Ti
(kof ns)

∆ ` Bi : Ti
(KOF B)

∆ ` B : N
(KOF NUMLIT)

∆ ` τ1 : T ∆ ` τ2 : T

∆ ` τ1 × τ2 : T
(kof prod)

∆ ` τ1 : TD ∆ ` τ2 : TD

∆ ` τ1 × τ2 : TD
(KOF PROD D)

∆ ` τ1 : Ti ∆ ` τ2 : Tj

∆ ` τ1 × τ2 : T(i + j)
(KOF PROD I) ∆ ` τ : T

∆ ` box (τ) : TW
(kof box) ∆ ` τ : T

∆ ` mbox(τ) : TW
(kof mbox)

∆ ` τ : TD

∆ ` sptr (τ) : TW
(kof sptr) ∆ ` τ : T ∆ ` x : N

∆ ` τ ↑x : T
(kof exp) ∆ ` τ : TD ∆ ` x : N

∆ ` τ ↑x : TD
(KOF EXP D)

∆ ` τ : Ti
∆ ` τ ↑B : T(i · B)

(KOF EXP I) ∆ ` τ : T
∆ ` τ ↑ 0 : T0

(KOF EXP Z) ∆ ` Γ
∆ ` Γ → 0 : TW

(kof arrow)

∆ ` x : N

∆ ` set =(x) : TW
(kof seteq) ∆ ` x : N

∆ ` set <(x) : TW
(kof setlt) ∆ ` x : N

∆ ` set >(x) : TW
(kof setgt)

∆, α:K ` τ : T

∆ ` ∀α:K.τ : T
(kof forall)

(K ′ ∈ {TD, Ti}) ∆ ` c : K
∆, α:K ` τ : T ∆ ` τ [c/α] : K ′

∆ ` ∀α:K.τ : K ′
(KOF FORALL DI)

∆, α:K ` τ : T

∆ ` ∃α:K.τ : T
(kof exists)

∆, α:K ` τ : Ti

∆ ` ∃α:K.τ : Ti
(KOF EXISTS I)

∆ ` void : Ti
(kof void)

∆, α:T ` τ : T

∆ ` µα.τ : T
(kof rec)

(K ∈ {TD, Ti})
∆, α:T ` τ : T ∆ ` τ [µα.τ/α] : K

∆ ` µα.τ : K
(KOF REC DI)

117

118 APPENDIX A. COMPLETE MINITALT SEMANTICS

∆ ` τ1 : T ∆ ` τ2 : T

∆ ` τ1 ∧ τ2 : T
(kof meet)

∆ ` τ1 : TD ∆ ` τ2 : T

∆ ` τ1 ∧ τ2 : TD
(KOF MEET D1)

∆ ` τ1 : T ∆ ` τ2 : TD

∆ ` τ1 ∧ τ2 : TD
(KOF MEET D2)

∆ ` τ1 : Ti ∆ ` τ2 : T

∆ ` τ1 ∧ τ2 : Ti
(KOF MEET I1)

∆ ` τ1 : T ∆ ` τ2 : Ti

∆ ` τ1 ∧ τ2 : Ti
(KOF MEET I2)

∆ ` τ1 : T ∆ ` τ2 : T

∆ ` τ1 ∨ τ2 : T
(kof join)

∆ ` τ1 : Ti ∆ ` τ2 : Ti

∆ ` τ1 ∨ τ2 : Ti
(KOF JOIN I) ∆ ` τ : TD

∆ ` τ : T
(KOF D) ∆ ` τ : Ti

∆ ` τ : TD
(KOF I)

∆ ` τsp : TD ∆ ` τr : TW for r ∈ {ax, . . . , bp}

∆ ` {eax :τax, . . . , ebp :τbp, esp :τsp}
(rtpok)

A.1.2 c1 ≡ c2, Γ ≡ Γ′ Static Term Equivalence

c ≡ c (equiv reflex)
c2 ≡ c1

c1 ≡ c2
(equiv symm)

c1 ≡ c2 c2 ≡ c3

c1 ≡ c3
(equiv trans)

(λα:K2.c1)c2 ≡ c1[c2/α]
(equiv beta)

(α not free in c)

(λα:K1.cα) ≡ c
(equiv eta)

c1 ≡ c2

λα:K1.c1 ≡ λα:K1.c2
(equiv lam)

c1 ≡ c′1c2 ≡ c′2
c1 c2 ≡ c′1 c′2

(equiv app)

x1 ≡ x2

set =(x1) ≡ set =(x2)
(equiv seteq)

x1 ≡ x2

set <(x1) ≡ set <(x2)
(equiv setlt)

x1 ≡ x2

set >(x1) ≡ set >(x2)
(equiv setgt)

τ1 ≡ τ ′
1 τ2 ≡ τ ′

2

τ1 × τ2 ≡ τ ′
1 × τ ′

2

(equiv prod) τ ≡ τ ′ x ≡ x′

τ ↑x ≡ τ ′ ↑x′
(equiv exp)

Γ ≡ Γ′

Γ → 0 ≡ Γ′ → 0
(equiv arrow) τ ≡ τ ′

box (τ) ≡ box (τ ′)
(equiv box) τ ≡ τ ′

mbox(τ) ≡ mbox(τ ′)
(equiv mbox)

τ ≡ τ ′

sptr (τ) ≡ sptr (τ ′)
(equiv sptr) τ ≡ τ ′

∀α:K.τ ≡ ∀α:K.τ ′
(equiv forall)

τ ≡ τ ′

∃α:K.τ ≡ ∃α:K.τ ′
(equiv exists)

τ1 ≡ τ ′
1 τ2 ≡ τ ′

2

τ1 ∧ τ2 ≡ τ ′
1 ∧ τ ′

2

(equiv meet)
τ1 ≡ τ ′

1 τ2 ≡ τ ′
2

τ1 ∨ τ2 ≡ τ ′
1 ∨ τ ′

2

(equiv join)

τ ≡ τ ′ τr ≡ τ ′
r for r ∈ {ax, . . . , bp}

{eax :τax, . . . , ebp :τbp, esp :τsp} ≡ {eax :τ ′
ax, . . . , ebp :τ ′

bp, esp :τ ′
sp}

(equivr)

A.1.3 ∆ ` τ1 ≤ τ2, ∆ ` Γ ≤ Γ′ Subtyping

∆ ` τ ≤ τ
(reflex)

τ1 ≡ τ2

∆ ` τ1 ≤ τ2
(reflexeq)

∆ ` τ1 ≤ τ3 ∆ ` τ3 ≤ τ2

∆ ` τ1 ≤ τ2
(trans)

∆ ` τ1 ≤ τ ′
1 ∆ ` τ2 ≤ τ ′

2

∆ ` τ1 × τ2 ≤ τ ′
1 × τ ′

2

(prod sub)
∆ ` τ ≤ τ ′

∆ ` τ ↑x ≤ τ ′ ↑ x
(exp sub)

∆ ` Γ′ ≤ Γ

∆ ` Γ → 0 ≤ Γ′ → 0
(arrow sub)

∆ ` τ ≤ τ ′

∆ ` box (τ) ≤ box (τ ′)
(box sub)

∆ ` τ ≤ τ ′ ∆ ` τ ′ ≤ τ

∆ ` mbox(τ) ≤ mbox(τ ′)
(mbox sub)

∆ ` mbox(τ) ≤ box (τ)
(forgetm)

∆ ` τ ≤ τ ′ ∆ ` τ : TD ∆ ` τ ′ : TD

∆ ` sptr (τ) ≤ sptr (τ ′)
(sptr sub)

A.1. STATIC SEMANTICS 119

∆, α:K ` τ ≤ τ ′

∆ ` ∀α:K.τ ≤ ∀α:K.τ ′
(forall sub)

∆, α:K ` τ ≤ τ ′

∆ ` ∃α:K.τ ≤ ∃α:K.τ ′
(exists sub)

∆, α:K ` τ : T ∆ ` c : K

∆ ` ∀α:K.τ ≤ τ [c/α]
(forall elim)

∆, α:K ` τ : T ∆ ` c : K

∆ ` τ [c/α] ≤ ∃α:K.τ
(exists intro)

(α /∈ τ)

∆ ` τ ≤ ∀α:K.τ
(gen)

(α /∈ τ)

∆ ` ∃α:K.τ ≤ τ
(cogen) ∆ ` τ : Ti

∆ ` τ ≤ ns i
(NS SUB) ∆ ` τ : T

∆ ` void ≤ τ
(void sub)

∆, α:T ` τ : T

∆ ` τ [µα.τ/α] ≤ µα.τ
(rec intro)

∆, α:T ` τ : T

∆ ` µα.τ ≤ τ [µα.τ/α]
(rec elim)

∆ ` τ ≤ τ1 ∆ ` τ ≤ τ2

∆ ` τ ≤ τ1 ∧ τ2
(meet intro)

∆ ` τ2 : T

∆ ` τ1 ∧ τ2 ≤ τ1
(meet elim1)

∆ ` τ1 : T

∆ ` τ1 ∧ τ2 ≤ τ2
(meet elim2)

∆ ` τ2 : T

∆ ` τ1 ≤ τ1 ∨ τ2
(join intro1)

∆ ` τ1 : T

∆ ` τ2 ≤ τ1 ∨ τ2
(join intro2)

∆ ` τ ∧ (τ1 ∨ τ2) ≤ (τ ∧ τ1) ∨ (τ ∧ τ2)
(meet dist join)

∆ ` τ1 : Ti ∆ ` τ2 : Ti

∆ ` (τ1 × τ2) ∧ (τ ′
1 × τ ′

2) ≤ (τ1 ∧ τ ′
1) × (τ2 ∧ τ ′

2)
(meet dist prod)

∆ ` τ × (τ1 ∨ τ2) ≤ (τ × τ1) ∨ (τ × τ2)
(prod dist join1)

∆ ` (τ1 ∨ τ2) × τ ≤ (τ1 × τ) ∨ (τ2 × τ)
(prod dist join2)

∆ ` τ : T
∆ ` τ × void ≤ void

(prod dist void1) ∆ ` τ : T
∆ ` void × τ ≤ void

(prod dist void2)

∆ ` τ1 × (τ2 × τ3) ≤ (τ1 × τ2) × τ3
(lassoc)

∆ ` (τ1 × τ2) × τ3 ≤ τ1 × (τ2 × τ3)
(rassoc)

∆ ` τ ≤ B0 × τ
(luniti)

∆ ` B0 × τ ≤ τ
(lunite)

∆ ` τ ≤ τ × B0
(runiti)

∆ ` τ × B0 ≤ τ
(runite)

∆ ` τ : T

∆ ` τ ↑B ≤ τB
(explode) ∆ ` τ : T

∆ ` τB ≤ τ ↑B
(implode)

∆ ` set =(B) ≤ BW
(seteq forget)

∆ ` set <(B) ≤ BW
(setlt forget)

∆ ` set >(B) ≤ BW
(setgt forget)

∆ ` set =(B) ∧ set <(B) ≤ void
(raa lt)

∆ ` set =(B) ∧ set >(B) ≤ void
(raa gt)

∆ ` set <(B) ∧ set >(B) ≤ void
(raa ltgt)

∆ ` BW≤ ∃α:N.set =(α)
(focus)

(B1 ≤ B2)

∆ ` set <(B1) ≤ set <(B2)
(subrange lt)

(B1 ≥ B2)

∆ ` set >(B1) ≤ set >(B2)
(subrange gt)

(B1 < B2)

∆ ` set =(B1) ≤ set <(B2)
(subrange eqlt)

(B1 > B2)

∆ ` set =(B1) ≤ set >(B2)
(subrange eqgt)

∆ ` τ ≤ τ ′ ∆ ` τr ≤ τ ′
r for r ∈ {ax, . . . , bp}

∆ ` {eax :τax, . . . , ebp :τbp, esp :τsp} ≤ {eax :τ ′
ax, . . . , ebp :τ ′

bp, esp :τ ′
sp}

(SUBRTYPE)

120 APPENDIX A. COMPLETE MINITALT SEMANTICS

A.1.4 ∆; Ψ; Γ ` o : τ Operand Typing

∆; Ψ; Γ ` B : set =(B)
(OOF SETEQ)

∆; Ψ; Γ ` ` : Ψ(`)
(OOF POINTER)

∆; Ψ; Γ ` esp : sptr (Γ(esp))
(oof spco)

∆; Ψ; Γ ` o : sptr (τ1 × τ2 × τ3)
∆ ` τ1 : Tn ∆ ` τ2 : Tm

∆ ` Γ(esp) ≤ τ × τ1 × τ2 × τ3

∆; Ψ; Γ ` m‘[o + n] : τ2
(oof zco)

∆; Ψ; Γ` o1 : box ((τ1 × τ2 × τ3) ↑x)
∆; Ψ; Γ` o2 : set <(x)
∆ ` τ1 : Tn
∆ ` τ2 : Tm
∆ ` τ1 × τ2 × τ2 : Tk

∆; Ψ; Γ ` m‘[o1 + n + k · o2] : τ2
(oof imco)

∆ ` τ1 : Tn ∆ ` τ2 : Tm
∆; Ψ; Γ ` o : box (τ1 × τ2 × τ3)

∆; Ψ; Γ ` m‘[o + n] : τ2
(oof mco)

∆; Ψ; Γ ` r : Γ(r)
(oof rco)

∆; Ψ; Γ ` o : BW ∆ ` x : N

∆; Ψ; Γ ` o : set <(x) ∨ set =(x) ∨ set >(x)
(OOF TRICHOTOMY)

∆; Ψ; Γ ` o : τ ′ ∆ ` τ ′ ≤ τ

∆; Ψ; Γ ` o : τ
(oof subsume)

A.1.5 ∆; Ψ; Γ ` d : τ → Γ′ Destination Typing

∆ ` τ : TW
∆; Ψ; Γ ` r : τ → Γ{r:τ}

(update rdest)
∆ ` τ ≤ sptr (τ2) ∆ ` Γ(esp) ≤ τ1 × τ2

∆; Ψ; Γ ` esp : τ → Γ{esp :τ2}
(update spdest)

∆; Ψ; Γ ` o : mbox(τ1 × τ2 × τ3) ∆ ` τ1 : Tn ∆ ` τ2 : Tm

∆; Ψ; Γ ` m‘[o + n] : τ2 → Γ
(update mdest)

∆ ` Γ(r) ≤ sptr (τ1 × τ2 × τ3)
∆ ` Γ(esp) ≤ τ × τ1 × τ2 × τ3

∆ ` τ1 : Tn ∆ ` τ2 : Tm ∆ ` τ ′
2 : Tm

∆; Ψ; Γ ` m‘[r + n] : τ ′
2 → Γ{esp :τ × τ1 × τ ′

2 × τ3, r:sptr (τ1 × τ ′
2 × τ3)}

(update zdest)

∆ ` τ1 : Tn ∆ ` τ2 : Tm ∆ ` τ1 × τ2 × τ2 : Tk
∆; Ψ; Γ ` o1 : mbox((τ1 × τ2 × τ3) ↑x) ∆; Ψ; Γ ` o2 : set <(x)

∆; Ψ; Γ ` m‘[o1 + n + k · o2] : τ2 → Γ
(update imdest)

A.1.6 ∆; Ψ; Γ ` I Instruction Typing

∆; Ψ; Γ ` o1 : B4 ∆; Ψ; Γ ` o2 : B4
∆; Ψ; Γ ` d : B4 → Γ′ ∆; Ψ; Γ′ ` I

∆; Ψ; Γ ` add d, o1, o2 I
(ok add)

∆; Ψ; Γ ` o : sptr (τ1 × τ2) ∆ ` τ1 : Ti
∆ ` τ2 : TD ∆; Ψ; Γ ` d : sptr (τ2) → Γ′ ∆; Ψ; Γ ` I

∆; Ψ; Γ ` addsptr d, o, i I
(ok addsptr)

A.1. STATIC SEMANTICS 121

(Γ(esp) = τs) ∆; Ψ; Γ ` ` : Γr → 0
∆; Ψ; Γ ` o : Γ{esp : (Γr → 0) × τs} → 0

∆; Ψ; Γ ` call o `
(ok call)

∆; Ψ; Γ ` I
∆; Ψ; Γ ` o1 : BW ∆; Ψ; Γ ` o2 : BW

∆; Ψ; Γ ` cmp o1, o2 I
(ok cmp)

(Γ(r) = τ1 ∨ τ2)
∆; Ψ; Γ ` o1 : BW
∆; Ψ; Γ ` o2 : set =(x)
∆ ` τ1 ∨ τ2 : TW
∆; Ψ; Γ{r:τ1} ` o1 : τ ′

1

∆; Ψ; Γ{r:τ2} ` o1 : τ ′
2

∆ ` τ ′
1 ∧ τκ,x

unsat ≤ void
∆ ` τ ′

2 ∧ τκ,x
sat ≤ void

∆; Ψ; Γ ` o3 : Γ{r:τ1, ck :t} → 0
∆; Ψ; Γ{r:τ2, ck :t}` I

∆; Ψ; Γ ` cmpjcc o1, o2, κ, o3 I
(ok cmpjcc)

∆ ` Γ(esp) ≤ B0

∆; Ψ; Γ ` halt
(ok halt)

∆; Ψ; Γ ` I
∆; Ψ; Γ ` o : Γ → 0

∆; Ψ; Γ ` jcc κ, o; I
(ok jcc)

∆; Ψ; Γ ` o : Γ → 0

∆; Ψ; Γ ` jmp o I
(ok jmp)

∆; Ψ; Γ ` o : τ
∆; Ψ; Γ ` d : τ → Γ′ ∆; Ψ; Γ′ ` I

∆; Ψ; Γ ` mov d, o
(ok mov)

∆; Ψ; Γ{r:nsw} ` I inits r:mbox(ns n)

∆; Ψ; Γ ` malloc n, r I
(ok malloc)

∆; Ψ; Γ ` o2 : set =(x) ∆; Ψ; Γ{r : nsw} ` o3 : τ
∆ ` τ : Tn ∆; Ψ; Γ{r:mbox(τ ↑ x)} ` I

∆; Ψ; Γ ` mallocarr o1, r, n, o2, o3 I
(ok mallocarr)

∆ ` Γ(esp) ≤ τ1 × τ2 ∆ ` τ1 : Tn ∆ ` τ2 : TD

∆; Ψ; Γ{esp :τ2} ` d : τ1 → Γ′ ∆; Ψ; Γ′ ` I

∆; Ψ; Γ ` pop n, d I
(ok pop)

(Γ(esp) = τs)
∆; Ψ; Γ ` o : τ ∆; Ψ; Γ{esp :τ × τs} ` I

∆; Ψ; Γ ` push o I
(ok push)

∆ ` τ : TD

∆ ` Γ(sp) ≤ (Γ{sp:τ} → 0) × τ

∆; Ψ; Γ ` ret
(ok ret)

∆; Ψ; Γ{esp : nsn × Γ(esp)} ` I

∆; Ψ; Γ ` salloc n I
(ok salloc)

∆ ` Γ(esp) ≤ τ1 × τ2 ∆ ` τ1 : Tn
∆ ` τ2 : TD ∆; Ψ; Γ{esp :τ2} ` I

∆; Ψ; Γ ` sfree n I
(ok sfree)

∆; Ψ; Γ ` o1 : BW ∆; Ψ; Γ ` o2 : BW
∆; Ψ; Γ ` d : BW→ Γ′ ∆; Ψ; Γ′ ` I

∆; Ψ; Γ ` sub d, o1, o2 I
(ok sub)

∆; Ψ; Γ′ ` I ∆ ` Γ ≤ Γ′

∆; Ψ; Γ ` I
(ok coerce)

122 APPENDIX A. COMPLETE MINITALT SEMANTICS

A.1.7 Ψ; ∆ ` I : τ block, ∆ ` P Block and Program Typing

Ψ; (∆, α:K) ` I : τ block

Ψ; ∆ ` I : ∀α:K.τ block
(BLOCKOK FORALL)

Ψ; ∆; Γ ` I

Ψ; ∆ ` I : Γ → 0 block
(BLOCKOK ARROW)

(dom(Ψ) = {`1, . . . , `n})
` Ψ (Ψ(`1) = {esp :B0} → 0)

Ψ; · ` Ii : Ψ(`i) block for 1 ≤ i ≤ n

` `1 = I1, . . . , `n = In

(PROGOK)

A.2 Operational Semantics

A.2.1 H, Vs, R ` o v Operand Resolution

H, Vs, R ` v v
(resolve im)

H, Vs, R ` r R(r)
(resolve rco)

H, Vs, R ` esp sptr (|Vs|)
(resolve spco)

H, Vs, R ` o ` (|V1| = n)
(H(`) = V1@V2@V3) (|V2| = m)

H, Vs, R ` m‘[o + n] V2
(resolve mco)

H, Vs, R ` o sptr (s) (Vs = V ′@V, |V | = s, V = V1@V2@V3, |V1| = n, |V2| = m)

H, Vs, R ` m‘[o + n] V2
(resolve zco)

H, Vs, R ` o1 ` H, Vs, R ` o2 B
(H(`) = V1@V2@V3, |V1| = n + n′B, |V2| = m)

H, Vs, R ` m‘[o1 + n + n′ · o2] V2
(resolve imco)

A.2.2 H, Vs, R ` d(v) H ′, V ′
s , R

′ Destination Propagation

H, Vs, R ` r(v) H, Vs, R{r 7→ v}
(propagate rdest)

(Vs = V0@V ′
s , |V ′

s | = n)

H, Vs, R ` esp (sptr (n)) H, V ′
s , R

(propagate spdest)

H, Vs, R ` o ` (H(`) = V1@V2@V3, |V1| = n, |V2| = W)

H, Vs, R ` W ‘[o + n](v) H{` 7→ V1@v@V3}, Vs, R
(propagate mdest)

H, Vs, R ` o sptr (s)
(Vs = V0@V1@V2@V3, |V1@V2@V3| = s, |V1| = n, |V2| = W)

H, Vs, R ` W ‘[o + n](v) H, V0@V1@v@V3, R
(propagate zdest)

H, Vs, R ` o1 ` H, Vs, R ` o2 B
(H(`) = V1@V2@V3, |V1| = m + m′B, |V2| = W)

H, Vs, R ` W ‘[o1 + m + m′ · o2](v) H{` 7→ V1@v@V3}, Vs, R
(propagate imdest)

Appendix B

Complete MiniTALT-R Typing Rules

To save space, this appendix focuses on the differences between MiniTALT and MiniTALT-R. Un-
less otherwise noted, all of the rules listed in Appendix A are retained in MiniTALT-R. Any rule
in this appendix with the same label as a rule in Appendix A supercedes the MiniTALT rule.
MiniTALT-R rules for which no MiniTALT analogues exist are given ad hoc names and labeled in
SMALL CAPS, even if there is an analogue in the LF implementation of TALT.

B.1 ∆ ` c : K Static Term Formation

(n ≥ 0)

∆ ` n : N
(kof numlit)

∆ ` t1 : N ∆ ` t2 : N

∆ ` t1 + t2 : N
(KOF NUMADD)

(K ∈ {T, Ti, TD})
∆ ` ϕ : P ∆ ` τ : K

∆ ` ϕ ⇒ τ : K
(KOF GUARD)

B.2 ∆ ` ϕ prop Constraint Formula Formation

∆ ` t1 : N ∆ ` t2 : N

∆ ` t1 ≤ t2 prop
(PROPOK LEQ)

∆ ` t1 : N ∆ ` t2 : N

∆ ` t1 = t2 : prop
(PROPOK EQ)

B.3 c1 ≡ c2, ϕ1 ≡ ϕ2 Static Term and Formula Equivalence

ϕ ≡ ϕ′ τ ≡ τ ′

ϕ ⇒ τ ≡ ϕ′ ⇒ τ ′
(EQUIV GUARD)

t1 ≡ t′1 t2 ≡ t′2
t1 + t2 ≡ t′1 + t′2

(EQUIV NUMADD)

t1 ≡ t′1 t2 ≡ t′2
(t1 ≤ t2) ≡ (t′1 ≤ t′2)

(FEQUIV LEQ)
t1 ≡ t′1 t2 ≡ t′2

(t1 = t2) ≡ (t′1 = t′2)
(FEQUIV EQ)

t ≡ t′ τ ≡ τ ′ τr ≡ τ ′
r for r ∈ {ax, . . . , bp}

{eax :τax, . . . , ebp :τbp, esp :τsp, ck :t} ≡ {eax :τ ′
ax, . . . , ebp :τ ′

bp, esp :τ ′
sp, ck :t′}

(equivr)

123

124 APPENDIX B. COMPLETE MINITALT-R TYPING RULES

B.4 ∆ ` ϕ true Constraint Truth

((ϕ true) ∈ ∆)

∆ ` ϕ true
(TR HYP) ∆ ` t : N

∆ ` t = t true
(TR EQ REFL)

∆ ` t2 = t1 true

∆ ` t1 = t2 true
(TR EQ SYMM)

∆ ` t1 = t3 true ∆ ` t3 = t2 true

∆ ` t1 = t2 true
(TR EQ TRANS)

∆ ` t1 = t′1 true ∆ ` t2 = t′2 true

∆ ` t1 + t2 = t′1 + t′2 true
(TR ADD COMPAT)

∆ ` m + n = m + n true
(TR ADD LIT)

∆ ` t : N

∆ ` 0 + t = t true
(TR ADD IDENT)

∆ ` t1 : N ∆ ` t2 : N

∆ ` t1 + t2 = t2 + t1 true
(TR ADD COMMUTE)

∆ ` ti : N (for i = 1, 2, 3)

∆ ` (t1 + t2) + t3 = t1 + (t2 + t3) true
(TR ADD ASSOC)

∆ ` t1 = t2 true

∆ ` t1 ≤ t2 true
(TR LEQ REFL)

∆ ` t1 ≤ t3 true ∆ ` t3 ≤ t2 true

∆ ` t1 ≤ t2 true
(TR LEQ TRANS)

(m ≤ n)

∆ ` m ≤ n true
(TR LEQ LIT)

∆ ` t1 ≤ t′1 true ∆ ` t2 ≤ t′2 true

∆ ` t1 + t2 ≤ t′1 + t′2 true
(TR ADD MONO)

∆ ` t + t1 ≤ t + t2 true

∆ ` t1 ≤ t2 true
(TR ADD INJ)

∆ ` t : N

∆ ` 0 ≤ t true
(TR LEQ Z)

∆ ` t1 ≤ t2 true ∆ ` t2 ≤ t1 true

∆ ` t1 = t2 true
(TR LEQ ANTISYMM)

B.4.1 Rule For Rational Extension

∆ `+
n

︷ ︸︸ ︷

t + · · · + t ≤

n
︷ ︸︸ ︷

u + · · · + u true (n ∈ {1, 2, . . .})

∆ `+t ≤ u true
(TR ADD REPEAT)

B.5 ∆ ` τ1 ≤ τ2, ∆ ` Γ ≤ Γ′ Subtyping

∆ ` ϕ prop

∆ ` τ ≤ (ϕ ⇒ τ)
(GEN GUARD)

∆ ` τ : T ∆ ` ϕ true

∆ ` (ϕ ⇒ τ) ≤ τ
(GUARD ELIM)

∆, ϕ true ` τ ≤ τ ′

∆ ` (ϕ ⇒ τ) ≤ (ϕ ⇒ τ ′)
(GUARD SUB)

∆ ` t1 = t2 true

∆ ` S(t1) ≤ S(t2)
(SETEQ SUB) ∆ ` t : N

∆ ` S(t) ≤ BW
(seteq forget)

∆ ` t′ ≤ t true ∆ ` τ ≤ τ ′ ∆ ` τr ≤ τ ′
r for r ∈ {ax, . . . , bp}

∆ ` {eax :τax, . . . , ebp :τbp, esp :τsp, ck :t} ≤ {eax :τ ′
ax, . . . , ebp :τ ′

bp, esp :τ ′
sp, ck :t′}

(SUBRTYPE)

B.5.1 Unofficial Rules

∆ ` t ≤ u true

∆ ` S(u) ≤ ∃a : N.S(t + a)
(FOCUS-LEQ)

B.6. ∆;Ψ;Γ ` O : τ OPERAND TYPING 125

B.6 ∆; Ψ; Γ ` o : τ Operand Typing

(∆, ϕ true); Ψ ` v : τ

∆; Ψ ` v : ϕ ⇒ τ
(OOF GUARD INTRO)

B.7 ∆; Ψ; Γ ` I Instruction Typing

(Γ(ck) = 1 + t)
∆; Ψ; Γ ` o1 : B4 ∆; Ψ; Γ ` o2 : B4

∆; Ψ; Γ ` d : B4 → Γ′ ∆; Ψ; Γ′{ck :t} ` I

∆; Ψ; Γ ` add d, o1, o2; I
(ok add)

∆; Ψ; Γ ` o : sptr (τ1 × τ2) ∆ ` τ1 : Ti ∆ ` τ2 : TD

∆; Ψ; Γ ` d : sptr (τ2) → Γ′ ∆; Ψ; Γ′{ck :t} ` I (Γ(ck) = 1 + t)

∆; Ψ; Γ ` addsptr d, o, i I
(ok addsptr)

∆′; Ψ; Γret ` I ∆′ ` Γret ∆; Ψ; Γ′ ` o : Γ′ → 0
(Γ(ck) = 1 + t) (∆′ = ∆, α1:K1, . . . , αn:Kn)

(Γ′ = Γ{sp :(∀α1:K1 . . .∀αn:Kn.Γret → 0) × Γ(sp), ck :t})

∆; Ψ; Γ ` call o; I
(ok call!!!!!)

∆; Ψ; Γ{ck :t} ` I (Γ(ck) = 1 + t)
∆; Ψ; Γ ` o1 : int ∆; Ψ; Γ ` o2 : int

∆; Ψ; Γ ` cmp o1, o2 I
(ok cmp)

(Γ(ck) = 2 + t) (Γ(r) = τ1 ∨ τ2)
∆; Ψ; Γ ` o1 : int
∆; Ψ; Γ ` o2 : set =(x)
∆ ` τ1 ∨ τ2 : TW
∆; Ψ; Γ{r:τ1} ` o1 : τ ′

1

∆; Ψ; Γ{r:τ2} ` o1 : τ ′
2

∆ ` τ ′
1 ∧ τκ,x

unsat ≤ void
∆ ` τ ′

2 ∧ τκ,x
sat ≤ void

∆; Ψ; Γ ` o3 : Γ{r:τ1, ck :t} → 0
∆; Ψ; Γ{r:τ2, ck :t}` I

∆; Ψ; Γ ` cmpjcc o1, o2, κ, o3 I
(ok cmpjcc)

∆; Ψ; Γ ` o : (Γ{ck :t}) → 0
∆; Ψ; Γ{ck :t} ` I (Γ(ck) = 1 + t)

∆; Ψ; Γ ` jcc κ, o; I
(ok jcc)

(Γ(ck) = 1 + t)
∆; Ψ; Γ ` o : (Γ{ck :t}) → 0

∆; Ψ; Γ ` jmp o; I
(ok jmp)

(Γ(ck) = 1 + t) ∆; Ψ; Γ ` o : τ
∆; Ψ; Γ ` d : τ → Γ′ ∆; Ψ; Γ′{ck :t} ` I

∆; Ψ; Γ ` mov d, o I
(ok mov)

(Γ(ck) = 1 + t)
∆; Ψ; Γ{r:nsw, ck :t} ` I inits r:mbox(ns n)

∆; Ψ; Γ ` malloc n, r I
(ok malloc)

126 APPENDIX B. COMPLETE MINITALT-R TYPING RULES

(Γ(ck) = 1 + t)
∆; Ψ; Γ ` o2 : set =(x) ∆; Ψ; Γ{r : nsw} ` o3 : τ

∆ ` τ : Tn ∆; Ψ; Γ{r:mbox(τ ↑x), ck :t} ` I

∆; Ψ; Γ ` mallocarr o1, r, n, o2, o3 I
(ok mallocarr)

(Γ(ck) = 1 + t)
∆ ` Γ(esp) ≤ τ1 × τ2 ∆ ` τ1 : Tn ∆ ` τ2 : TD

∆; Ψ; Γ{esp :τ2} ` d : τ1 → Γ′ ∆; Ψ; Γ′{ck :t} ` I

∆; Ψ; Γ ` pop n, d I
(ok pop)

(Γ(ck) = 1 + t) ∆; Ψ; Γ ` o : τ
∆ ` τ : TD ∆; Ψ; Γ{esp :τ × Γ(esp), ck :t ` I

∆; Ψ; Γ ` push o I
(ok push)

∆ ` τ : TD (Γ(ck) = 1 + t)
∆ ` Γ(esp) ≤ (Γ{esp :τ, ck :t} → 0) × τ

∆; Ψ; Γ ` ret
(ok ret)

(Γ(ck) = 1 + t)
∆; Ψ; Γ{esp :nsn × Γ(esp), ck :t} ` I

∆; Ψ; Γ ` salloc n I
(ok salloc)

(Γ(ck) = 1 + t)
∆ ` Γ(esp) ≤ τ1 × τ2 ∆ ` τ1 : Tn

∆ ` τ2 : TD ∆; Ψ; Γ{esp :τ2, ck :t} ` I

∆; Ψ; Γ ` sfree n I
(ok sfree)

(Γ(ck) = 1 + t)
∆; Ψ; Γ ` o1 : int ∆; Ψ; Γ ` o2 : int

∆; Ψ; Γ ` d : int → Γ′ ∆; Ψ; Γ′{ck :t} ` I

∆; Ψ; Γ ` sub d, o1, o2 I
(ok sub)

∆; Ψ; Γ{ck :Y } ` I

∆; Ψ; Γ ` yield ; I
(OK YIELD)

∆; Ψ; Γ{r d:BW, ck :t} ` I
∆; Ψ; Γ ` o3 : ∀a:N.(u = v + a) ⇒ Γ{r d:S(a), ck :t} → 0

∆; Ψ; Γ ` o1 : S(u) ∆; Ψ; Γ ` o2 : S(v) (Γ(ck) = 2 + t)

∆; Ψ; Γ ` subjae r d, o1, o2, o3 I
(OK SUBJAE)

B.7.1 Unofficial Rules

∆; Ψ; Γ{r d:BW, ck :t} ` I
∆; Ψ; Γ ` o3 : Γ{r d:S(u + v), ck :t} → 0

∆; Ψ; Γ ` o1 : S(u) ∆; Ψ; Γ ` o2 : S(v) (Γ(ck) = 2 + t)

∆; Ψ; Γ ` addjno r d, o1, o2, o3 I
(OK ADDJNO)

∆; Ψ; Γ ` o1 : S(u + v) ∆; Ψ; Γ ` o2 : S(u)
∆; Ψ; Γ′{ck :t} ` I ∆; Ψ; Γ ` d : S(v) → Γ′ (Γ(ck) = 1 + t)

∆; Ψ; Γ ` sub d, o1, o2 I
(OK SUB SETEQ)

B.8 ∆; Ψ; Γ ` I inits r:mbox(τ) Object Initialization

∆ ` τ ≤ τ1 × τ2 × τ3

∆ ` τ1 : Tn ∆ ` τ2 : Tm ∆ ` τ ′
2 : Tm (Γ(ck) = 1 + t)

∆; Ψ; Γ ` o : τ ′
2 ∆; Ψ; Γ{ck :t} ` I inits r:mbox(τ1 × τ ′

2 × τ3)

∆ ` mov m‘[r + n], o I inits r:mbox(τ)
(ok init mov)

B.9. Ψ;∆ ` I : τ BLOCK BLOCK TYPING 127

∆ ` τ ≤ τ1 × τ2 × τ3

∆ ` τ1 : Tn ∆ ` τ2 : Tm (Γ(ck) = 1 + t)
∆ ` Γ(esp) ≤ τ ′

2 × τ ′ ∆ ` τ ′
2 : Tm ∆ ` τ ′ : TD

∆; Ψ; Γ{esp :τ ′, ck :t} ` I inits r:mbox(τ1 × τ ′
2 × τ3)

∆ ` pop m, m‘[o + n] I inits r:mbox(τ)
(ok init pop)

∆; Ψ; Γ{r:mbox(τ)} ` I

∆; Ψ; Γ ` I inits r:mbox(τ)
(ok init done)

B.9 Ψ; ∆ ` I : τ block Block Typing

Ψ; (∆, ϕ true) ` I : τ block

Ψ; ∆ ` I : ϕ ⇒ τ block
(BLOCKOK GUARD)

128 APPENDIX B. COMPLETE MINITALT-R TYPING RULES

Appendix C

Rational Semantic Proofs

This appendix continues the discussion of Chapter 4 to describe a somewhat more powerful vari-
ant of the TALT-R constraint logic. The result that there exists a proof within this peculiar logic of
a given formula under given hypotheses if and only if there exists a feasible solution to a certain
integer program (in the proof of Theorem 4.1) raises some questions. Among the most obvious
is, what happens if this linear program is feasible over the rationals but not the integers? It is
not hard to convince oneself that when the program is feasible over Q, the constraint problem
from which it was derived is valid over Q (and hence also Z), for a feasible solution provides a
set of multipliers by which any high school algebra student may scale the hypotheses, add them
together and conclude the truth of the goal formula — and to the high school student, it makes
little difference whether these multipliers are integers or not.

By allowing the possibility of noninteger coefficients in a linear combination, in fact, we all but
exhaust the high school algebra student’s repertoire of techniques for deriving such inequalities.
Indeed, it turns out that if the restriction to integers in the characteristic linear program is dropped,
then an interesting completeness property can be shown to hold. It further turns out that only
one more rule must be added to the TALT-R constraint logic to get a proof system of equivalent
power — that is, capable of deriving any constraint judgment that denotes a valid entailment
over the rational numbers (with one technical restriction). Those two results are the subject of this
appendix.

Other than a few notational definitions, surprisingly little work is needed to prove that there
exists a (rational) feasible solution to the linear program in the proof of Theorem 4.1 (hereafter
called the characteristic linear program of the judgment ∆ ` t ≤ u true) whenever, and only when,
the constraints ∆ imply t ≤ u over the nonnegative rationals. In fact, this is a simple corollary
of so-called linear programming duality, a concept well understood by numerical optimization
experts if not by programming language designers. For an overview of the topic I refer the reader
to the popular algorithms textbook from which the following definitions, notations, and statement
of the key theorem are adapted [10].

C.1 Linear Programming Duality

A linear program is an optimization problem in which the goal is to maximize (or minimize) the
value of one linear polynomial (the objective function) subject to a set of constraints, each of which
is a linear equation or inequality. A linear program in standard form can be written like so:

129

130 APPENDIX C. RATIONAL SEMANTIC PROOFS

Maximize: c1x1 + · · · + cnxn

subject to: a11x1 + · · ·+ a1nxn ≤ b1

...
...

...
am1xm + · · ·+amnxn ≤bm

and xi ≥ 0 for 1 ≤ i ≤ n.

The nonnegativity constraints for all the variables are usually left implicit. Every linear program
has an equivalent standard form.

The dual of the linear program above is the following one (not in standard form):

Minimize: b1y1 + · · · + bmym

subject to: a11y1 + · · ·+ am1ym ≥ c1

...
...

...
a1ny1 + · · ·+amnym ≥ cn

and yi ≥ 0 for 1 ≤ i ≤ m.

In other words, to obtain the dual linear program from the original (or primal), we:

1. transpose the matrix of coefficients in the constraints, so that there are now m variables and
n constraints;

2. interchange the roles of the constant terms (the b’s in the primal) and the objective function
coefficients (the c’s in the primal);

3. replace maximization with minimization; and

4. reverse the sense of each inequality constraint (except for the nonnegativity constraints).

(The last of these is the reason the dual program as given above is not in standard form.) The
linear programming duality theorem states that the primal and dual linear programs have the
same optimal objective value.

Theorem C.1 (Linear-programming duality) For primal and dual linear programs as given above, if
x̄ = (x̄1, . . . , x̄n) is an optimal solution to the primal linear program and ȳ = (ȳ1, . . . , ȳm) is an optimal
solution to the dual linear program, then

n∑

i=1

cixi =
m∑

j=1

bjyj .

Proof: See [10], Chap. 29, Thm. 29.10.

C.2. CHARACTERISTIC LINEAR PROGRAMS 131

C.2 Characteristic Linear Programs

An assignment over a set A is a function η : Var → A. If P is a linear polynomial (in the sense of
Definition 4.2), then the application of P to an assignment η over Q is the rational number given
by

P@η = P (1) +
∑

x∈Var

P (x)η(x).

(If η is an assignment over Z, then P@η is an integer.) An assignment η over the nonnegative
rationals (or over the nonnegative integers) is a rational model (or an integer model, respectively)
of the polynomial constraint (P ≤ 0) if P@η ≤ 0. A model of a set of polynomial constraints
is an assignment that is a model of every constraint in the set. A set of polynomial constraints is
consistent over Q or Z if it has at least one rational or integer model, respectively, and inconsistent
otherwise. A constraint judgment ∆ ` t ≤ u true is valid over Q or over Z if every rational or
integer model, respectively, of [[∆]] is a model of [[t ≤ u]].

Theorem C.2 If ∆ is finite and [[∆]] is consistent over Q, then ∆ ` t ≤ u true is valid over Q if and only
if the linear program in the proof of Theorem 4.1 is feasible over Q.

Proof: Suppose, in all that follows, that [[∆]] is consistent over Q. Let J stand for the judgment
∆ ` t ≤ u true. The structure of this proof is as follows: we construct a feasible linear program
L whose maximum objective value is nonpositive if and only if J is valid over Q; by the duality
theorem, it follows that L’s dual program L∗ can take on a negative objective value iff J is valid;
finally we show that L∗ can take on a negative objective value if and only if the characteristic linear
program of Theorem 4.1 is feasible.

First, we construct a linear program corresponding directly to the validity of J . Suppose ∆ =
{H1, . . . ,Hn}. Any assignment η that is a model of [[∆]] must by definition satisfy the following:

H1(1) + H1(a1)η(a1) + · · ·+ H1(am)η(am) ≤ 0
...

...
...

...
...

Hn(1) + Hn(a1)η(a1) + · · ·+ Hn(am)η(am) ≤ 0

where a1, . . . , am are all of the constraint term variables appearing in J . J is valid over the ra-
tionals if and only if for every such η, [[t ≤ u]]@η ≤ 0, that is, if the objective value of the linear
program

Maximize: P (1) + P (a1)x1 + · · · + P (am)xm

subject to: H1(1) + H1(a1)x1 + · · ·+ H1(am)xm ≤ 0
...

...
...

Hn(1) + Hn(a1)x1 + · · ·+ Hn(am)xm ≤0

and xi ≥ 0 for 1 ≤ i ≤ m

is always less than or equal to zero, where P = [[t ≤ u]]. Because [[∆]] is consistent, this linear
program is feasible, so J is valid if and only if the optimal objective value of the program is
nonpositive.

This program is not quite in standard form as defined above, because of the constant terms on
the left-hand sides of the constraints. One way to obtain an equivalent program in standard form

132 APPENDIX C. RATIONAL SEMANTIC PROOFS

is to add a new variable, x1, to play the role of unity, and constrain it to be equal to 1. In this way
we obtain the linear program L:

Maximize: P (1)x1 + P (a1)x1 + · · · + P (am)xm

subject to: H1(1)x1 + H1(a1)x1 + · · ·+ H1(am)xm ≤ 0
...

...
...

Hn(1)x1 + Hn(a1)x1 + · · ·+Hn(am)xm ≤ 0
x1 ≤ 1
−x1 ≤ −1

and all variables ≥ 0.

This program has a nonpositive optimum if and only if the judgment J is valid over Q.

The dual of the program above is:

Minimize: y1 − y−1

subject to: H1(1)y1 + · · ·+ Hn(1)yn + y1 − y−1 ≥ P (1)
H1(a1)y1+ · · ·+ Hn(a1)yn ≥ P (a1)
...

...
...

H1(am)y1+ · · ·+ Hn(am)yn ≥ P (am)

and all variables ≥ 0.

The constraints of this linear program are almost exactly the same as those of the characteristic
linear program of Theorem 4.1. The only difference is the presence of the two extra terms in
the first line of this dual linear program, which are missing in the characteristic linear program.
Therefore, we can say that the characteristic linear program is feasible if and only if there is a
feasible solution to the present program with objective value zero.

Now, if the judgment J is valid over the rationals, then the objective value of the primal linear
program is bounded above by zero, so its maximum objective value is nonpositive. This means
that the minimum objective value of the dual linear program is also nonpositive. But because
the only occurrence of the variables in the objective function in the constraints is in the first line,
where the objective function appears positively on the left of a ≥, if there is a feasible solution
with negative objective value, then there is one with objective value zero. This latter solution
corresponds to a solution to the characteristic linear program.

Conversely, if the characteristic system of inequalities is satisfiable, then by setting y1 = y−1 =
0 we obtain a feasible solution to the dual program with objective value zero. There are now
two cases: either the dual program is unbounded, or it has a minimum objective value that is
nonpositive. In the latter case, the maximum objective value of the primal program is nonpositive
and so J is valid over the rationals. As for the unbounded case, it is a fact that for any pair of dual
linear programs, the objective value of any feasible solution to the maximization problem is less
than or equal to that of any feasible solution to the minimization problem; it follows that if either
one is unbounded, then other is infeasible. Therefore, if the dual program is unbounded, then [[∆]]
is inconsistent, contradicting our assumption to the contrary.

We conclude that J is valid over Q if and only if the characteristic system of inequalities has a
rational solution.
End of Proof.

C.3. RATIONAL SEMANTIC PROOFS 133

C.3 Rational Semantic Proofs

Now that I have shown the connection between the validity of a truth judgment and the sat-
isfiability of is characteristic inequalities, we can work backwards through the development of
Section 4.2 to discover an extension of the TALT-R constraint logic capable of deriving all those
judgments that are true in that sense. The first step is to define a new notion of semantic proof
that admits a rational version of the proof of Theorem 4.1.

Definition C.1 A rational semantic proof of (P ≤ 0) in context ∆ is a semantic proof of (qP ≤ 0) in
∆ for some positive integer q.

Lemma C.1 There exists a rational semantic proof of [[t ≤ u]] in context ∆ if and only if there is a rational
solution to the characteristic inequalities of ∆ ` t ≤ u true.

Proof Sketch: Since the left-hand sides of those inequalities are homogeneous and the right-hand
sides consist of the coefficients in P , scaling any solution to the inequalities for P by an integer q
gives a solution to the inequalities for qP .
End of Sketch.

Lemma C.2 If there exist rational semantic proofs of (P ≤ 0) and (Q ≤ 0) in context ∆, then there exists
a rational semantic proof of (P + Q ≤ 0) in ∆.

Proof: Suppose ∆ ` M : pP ≤ 0 and ∆ ` N : qQ ≤ 0 where p and q are positive integers.
If M = (A,F), then define qM to consist of the multiset qA containing q copies of A and the
polynomial qF , and define pN similarly. Then ∆ ` qM : pqP ≤ 0 and ∆ ` pN : pqQ ≤ 0. By
Lemma 4.12, there is a semantic proof of pq(P + Q) ≤ 0 in ∆, which is a rational semantic proof of
(P + Q) ≤ 0.
End of Proof.

C.4 Augmented Syntactic Proof System

Finally, I modify the TALT-R constraint logic to correspond to this new semantic proof theory by
adding one additional rule schema:

∆ `+
n

︷ ︸︸ ︷

t + · · · + t ≤

n
︷ ︸︸ ︷

u + · · · + u true (n ∈ {1, 2, . . .})

∆ `+t ≤ u true

(I distinguish the augmented system from the original by writing `+ in place of `.)

The new rule essentially allows for the high-school algebra operation of dividing both sides
of an inequality by a constant positive integer, provided this does not produce any nonintegral
coefficients on either side. Of course, there is no multiplication in the constraint term language,
so the “division” is really the removal of repeated addition. Together with the ability to add
inequalities (the monotonicity rule), this allows hypotheses in a proof to be scaled by any rational
factor so long as the resulting formula is expressible using integer coefficients. The augmented
system of syntactic proof rules is equivalent to the semantic proof theory just defined.

134 APPENDIX C. RATIONAL SEMANTIC PROOFS

Lemma C.3 For any terms t and u and positive integer n,

[[t + · · · + t
︸ ︷︷ ︸

n

≤ u + · · · + u
︸ ︷︷ ︸

n

]] = n[[t ≤ u]].

Proof: Omitted.

Lemma C.4 (Soundness of Rational Semantic Proof) If there is a rational semantic proof of [[t ≤ u]]
in context ∆, then ∆ `+t ≤ u true.

Proof: Suppose ∆ |= M : q[[t ≤ u]]. By Lemma C.3, ∆ |= M : [[t + · · · + t ≤ u + · · · + u]], where
each sum has q copies of the term. By Lemma 4.11, ∆ ` t + · · · + t ≤ u + · · · + u true and thus
∆ `+t + · · · + t ≤ u + · · · + u true. By the new rule, ∆ `+t ≤ u true.
End of Proof.

Lemma C.5 (Completeness of Rational Semantic Proof) If ∆ `+t ≤ u true, then there is a rational
semantic proof M of [[t ≤ u]] in context ∆.

Proof Sketch: Analogous to Lemma 4.13, using Lemma C.2 in place of Lemma 4.12, and with one
new case.

Case:

∆ `+
n

︷ ︸︸ ︷

t + · · · + t ≤

n
︷ ︸︸ ︷

u + · · · + u true (n ∈ {1, 2, . . .})

∆ `+t ≤ u true

By the induction hypothesis, ∆ |= M : q[[t + · · · + t ≤ u + · · · + u]].
By Lemma C.3, ∆ |= M : qn[[t ≤ u]].
Thus [[t ≤ u]] is rationally semantically provable, as desired.
End of Sketch.

Theorem C.3 (Characterization of Augmented System)

1. It is decidable whether or not ∆ `+ϕ true.

2. If ∆ `+ϕ true, then ∆ ` ϕ true is valid over Q.

3. If ∆ is consistent over Q and ∆ ` ϕ true is valid over Q, then ∆ `+ϕ true.

Proof:

1. By Lemmas C.1, C.4 and C.5, it suffices to decide whether there is a rational solution to the
characteristic inequalities. This can be accomplished using any linear programming algo-
rithm.

2. Suppose ∆ `+ϕ true. By Lemma C.5, there is a rational semantic proof of [[ϕ]] in ∆. By
Lemma C.1, there is a rational solution to the characteristic inequalities. By Theorem C.2,
either ∆ ` ϕ true is valid over Q or ∆ is inconsistent over Q. But if ∆ has no rational model,
then ∆ ` ϕ true is vacuously valid over Q.

3. Suppose ∆ is consistent over Q and ∆ ` ϕ true is valid over Q. By Theorem C.2, there is a
rational solution to the characteristic inequalities; by Lemma C.1, there is a rational semantic
proof of [[ϕ]]. By Lemma C.4, ∆ `+ϕ true.

End of Proof.

Appendix D

Typing Rules for Lilt

∆ ` Φ ∆ ` Λ ∆ ` Γ ∆ ` Ξ

∆ ` τi : T for 1 ≤ i ≤ n

∆ ` (f1:τ1, . . . , fn:τn)

∆ ` γi btype for 1 ≤ i ≤ n

∆ ` (ell1:γ1, . . . , `n:γn)

∆ ` τi : T for 1 ≤ i ≤ n

∆ ` [s1:τ1, . . . , sn:τn] ∆ ` ·
∆ ` Ξ ∆ ` Γ

∆ ` Ξ,Γ

∆ ` · handles Γ

∆ ` Γ ≤ Γ′

∆ ` (Ξ,Γ′) handles Γ

∆ ` Ξ handles Γ

∆ ` τ1 ≤ τ2 ∆ ` Γ1 ≤ Γ2 ∆ ` Ξ1 ≤ Ξ2

∆ ` τ1 = τ2 : T
∆ ` τ1 ≤ τ2

∆ ` τ1 : T ∆ ` τ2 = ns : T
∆ ` τ1 ≤ τ2

∆ ` τi ≤ τ ′
i for 1 ≤ i ≤ n

∆ ` [s1:τ1, . . . , sn:τn] ≤ [s1:τ
′
1, . . . , sn:τ ′

n] ∆ ` · ≤ ·

∆ ` Ξ1 ≤ Ξ2 ∆ ` Γ2 ≤ Γ1

∆ ` (Ξ1,Γ1) ≤ (Ξ2,Γ2)

∆ ` c : k

((α:k) ∈ ∆)

∆ ` α : k ∆ ` ns : T ∆ ` int : T ∆ ` bool : T ∆ ` unit : T

∆ ` τi : T for 1 ≤ i ≤ k

∆ ` 〈τ1, . . . , τk〉 : T

(ij 6= ik for j 6= k)
∆ ` τi : T for 1 ≤ i ≤ k

∆ ` [i1:τ1, . . . , in:τn] : T

∆ ` τ : T
∆ ` τi : T for 1 ≤ i ≤ n

∆ ` (τ1, . . . , τn) → τ : T

135

136 APPENDIX D. TYPING RULES FOR LILT

∆ ` τ : T
∆ ` τ array : T

∆, α:T ` τ : T

∆ ` µα.τ : T

∆, α1:k1, . . . , αn:kn ` τ : T

∆ ` ∀α1:k1, . . . , αn:kn.τ : T

∆, α1:k1, . . . , αn:kn ` τ : T

∆ ` ∃α1:k1, . . . , αn:kn.τ : T

∆, α:k1 ` c : k2

∆ ` λα:k1.c : k1 → k2

∆ ` c1 : k2 → k ∆ ` c2 : k2

∆ ` c1 c2 : k

∆ ` γ btype

(dom(∆) ∩ dom(∆′) = ∅)
(∆,∆′) ` Ξ (∆,∆′) ` Γ

∆ ` lbl(∆′; Ξ; Γ) btype

(dom(∆) ∩ dom(∆′) = ∅)
(∆,∆′) ` Ξ (∆,∆′) ` Γ

∆ ` hnd(∆′; Ξ; Γ) btype

∆ ` c1 = c2 : k

((α:k) ∈ ∆)

∆ ` α = α : k ∆ ` ns = ns : T ∆ ` int = int : T ∆ ` bool = bool : T

∆ ` unit = unit : T

∆ ` τi = τ ′
i : T for 1 ≤ i ≤ k

∆ ` 〈τ1, . . . , τk〉 = 〈τ ′
1, . . . , τ

′
2〉 : T

(ij 6= ik for j 6= k)
∆ ` τi = τ ′

i : T for 1 ≤ i ≤ k

∆ ` [i1:τ1, . . . , in:τn] = [i1:τ
′
1, . . . , in:τ ′

n] : T

∆ ` τ = τ ′ : T
∆ ` τi = τ ′

i : T for 1 ≤ i ≤ n

∆ ` (τ1, . . . , τn) → τ = (τ ′
1, . . . , τ

′
n) → τ ′ : T

∆ ` τ = τ ′ : T
∆ ` τ array = τ ′ array : T

∆, α:T ` τ = τ ′ : T

∆ ` µα.τ = µα.τ ′ : T

∆, α1:k1, . . . , αn:kn ` τ = τ ′ : T

∆ ` ∀α1:k1, . . . , αn:kn.τ = ∀α1:k1, . . . , αn:kn.τ ′ : T

∆, α:k1 ` c = c′ : k2

∆ ` λα:k1.c = λα:k1.c
′ : k1 → k2

∆, α1:k1, . . . , αn:kn ` τ = τ ′ : T

∆ ` ∃α1:k1, . . . , αn:kn.τ = ∃α1:k1, . . . , αn:kn.τ ′ : T

∆ ` c2 = c′2 : k2

∆ ` c1 = c′1 : k2 → k

∆ ` c1 c2 = c′1 c′2 : k

∆, α:k2 ` c1 : k ∆ ` c2 : k2

∆ ` (λα:k2.c1) c2 = c1[c2/α] : k

∆ ` q : τ1 ⇒ τ2

∆ ` id : τ ⇒ τ

∆ ` ci : ki for 1 ≤ i ≤ n

∆ ` [c1, . . . , cn] : ∀α1:k1, . . . , αn:kn.τ ⇒ τ [c1, . . . , cn/α1, . . . , αn]

137

∆ ` τ = µα.τ ′ : T

∆ ` rollτ : τ ′[τ/α] ⇒ τ

∆ ` µα.τ : T

∆ ` unroll : µα.τ ⇒ τ [µα.τ/α]

∆ ` τ = ∃α1:k1, . . . , αn:kn.τ ′ : T ∆ ` ci : ki for 1 ≤ i ≤ n

∆ ` pack[τ, c1, . . . , cn] : τ ′[c1, . . . , cn/α1, . . . , αn] ⇒ τ

∆ ` q : τ ′
1 ⇒ τ ′

2

∆ ` τi = τ ′
i : T for i = 1, 2

∆ ` q : τ1 ⇒ τ2

Φ;∆;Γ ` r : τ

(Γ(s) = τ)

Φ;∆; Γ ` s : τ Φ;∆;Γ ` n : int Φ;∆;Γ ` tt : bool Φ;∆;Γ ` ff : bool

Φ;∆;Γ ` ? : unit

(Φ(f) = τ)

Φ;∆; Γ ` f : τ

Φ;∆;Γ ` v : τ2 ∆ ` q : τ2 ⇒ τ

Φ;∆;Γ ` q@v : τ

Φ;∆;Γ ` r : τ ′ ∆ ` τ ′ = τ

Φ;∆;Γ ` r : τ

(op : (τ1, . . . , τk) → τ) Φ;∆; Γ ` vi : τi for 1 ≤ i ≤ k

Φ;∆;Γ ` op(v1, . . . , vk) : τ

Φ;∆;Γ ` vi : τi for 0 ≤ i ≤ k

Φ;∆;Γ ` 〈v0, . . . , vk〉 : 〈τ0, . . . , τk〉

Φ;∆;Γ ` v : 〈τ0, . . . , τk〉

Φ;∆;Γ ` πiv : τi

Φ;∆;Γ ` vi : τ for 1 ≤ i ≤ n

Φ;∆;Γ ` {v1, . . . , vn} : τ array

∆ ` τ = [. . . , j:τj , . . .]
Φ;∆; Γ ` v : τj

Φ;∆;Γ ` injτ (j, v) : τ

Φ;∆;Γ ` v : [i : τ]

Φ;∆; Γ ` outj(v) : τ

Φ;∆;Γ ` cond cond

Φ;∆;Γ ` vi : int for i = 1, 2

Φ;∆;Γ ` v1 = v2 cond

Φ;∆;Γ ` vi : int for i = 1, 2

Φ;∆;Γ ` v1 < v2 cond

Φ;∆;Λ;Ξ; Γ; τ ` e

Φ;∆;Γ ` v : τ

Φ;∆;Λ;Ξ; Γ; τ ` return v

Φ;∆;Γ ` v : τexn ∆ ` Ξ handles Γ

Φ;∆;Λ;Ξ; Γ; τ ` raise v

(Λ(`) = lbl(α1:k1, . . . , αn:kn; Ξ′; Γ′))
∆ ` ci : ki ∆ ` Γ ≤ Γ′[~c/~α] ∆ ` Ξ ≤ Ξ′[~c/~α]

Φ;∆;Λ;Ξ; Γ; τ ` goto `[c1, . . . , cn]

Φ;∆; Γ ` r : τ ′ Φ;∆;Λ;Ξ; Γ[s 7→ τ ′]; τ ` e

Φ;∆;Λ;Ξ; Γ; τ ` let s = r in e

Φ;∆;Γ ` v : (τ ′
1 . . . , τ ′

n) → τ ′′ ∆ ` Ξ handles Γ
∆ ` vi : τ ′

i for 1 ≤ i ≤ n Φ;∆;Λ;Ξ; Γ[s 7→ τ ′′]; τ ` e

Φ;∆;Λ;Ξ; Γ; τ ` let s = v(v1, . . . , vn) in e

138 APPENDIX D. TYPING RULES FOR LILT

Φ;∆;Γ ` v : 〈τ0, . . . , τm〉
Φ;∆;Γ ` v : τi Φ;∆;Λ;Ξ; Γ; τ ` e

Φ;∆;Λ;Ξ; Γ; τ ` let πi v := v′ in e

Φ;∆;Γ ` v : τ ′ array Φ;∆;Γ ` v′ : int
∆ ` Ξ handles Γ Φ;∆;Λ;Ξ; Γ[s 7→ τ ′]; τ ` e

Φ;∆;Λ;Ξ; Γ; τ ` let s = sub(v, v′) in e

Φ;∆;Γ ` v1 : τ ′ array Φ;∆;Γ ` v2 : int
Φ;∆;Γ ` v3 : τ ′ ∆ ` Ξ handles Γ Φ;∆;Λ;Ξ; Γ; τ ` e

Φ;∆;Λ;Ξ; Γ; τ ` let sub(v1, v2) := v3 in e

Φ;∆;Γ ` v : [j:τ , i:τ ′, j:τ
′
]

Φ;∆;Λ;Ξ; Γ[s 7→ [i:τ ′]]; τ ` e1 Φ;∆;Λ;Ξ; Γ[s 7→ [j:τ , j:τ
′
]]; τ ` e2

Φ;∆;Λ;Ξ; Γ; τ ` case v of inj(i, s) ⇒ e1 else e2

Φ;∆;Γ ` v : ∃α1:k1, . . . , αn:kn.τ ′ Φ; (∆, α1:k1, . . . , αn:kn); Λ; Ξ; Γ[s 7→ τ ′]; τ ` e

Φ;∆;Λ;Ξ; Γ; τ ` let(α1, . . . , αn, s) = unpack v in e

Φ;∆;Γ ` cond cond

Φ;∆;Λ;Ξ; Γ; τ ` e1 Φ;∆;Λ;Ξ; Γ; τ ` e2

Φ;∆;Λ;Ξ; Γ; τ ` if cond then e1 else e2

Φ;∆;Λ;Ξ; Γ; τ ` e

Φ;∆;Λ; (Ξ,Γ′); Γ; τ ` pophandler in e

(Λ(`) = hnd(α1:k1, . . . , αn:kn; Ξ′; Γ′))
∆ ` ci : ki ∆ ` Ξ ≤ Ξ′[~c/~α] Φ;∆;Λ; (Ξ,Γ′[~c/~α]); Γ; τ ` e

Φ;∆;Λ;Ξ; Γ; τ ` pushhandler `[c1, . . . , cn] in e

Φ;∆;Λ; τ ` B : γ

∆,∆′ ` Ξ
∆,∆′ ` Γ Φ; (∆,∆′); Λ; Ξ; Γ; τ ` e

Φ;∆;Λ; τ ` block(∆′; Ξ; Γ).e : lbl(∆′; Ξ; Γ)

∆,∆′ ` Ξ ∆,∆′ ` Γ
Φ; (∆,∆′); Λ; Ξ; Γ[s 7→ τexn]; τ ` e

Φ;∆;Λ; τ ` hndl(∆′; Ξ; Γ; s).e : hnd(∆′; Ξ; Γ)

Φ ` F : τ

` ∆ ∆ ` Γarg ∆ ` τ : T ∆ ` Λ
Φ;∆;Λ; ·; Γ; τ ` e Φ;∆;Λ; τ ` Bi : Λ(`i) for 1 ≤ i ≤ m

Φ ` func(∆; Γarg; τ).(enter(s1, . . . , sn).e, `1 = B1, . . . , `m = Bm) : ∀∆.(τ1, . . . , τp) → τ

where
Γarg = [s′1:τ1, . . . , s

′
p:τp]

Γ = [s′1:τ1, . . . , s
′
p:τp, s1:ns , . . . , sn:ns]

each Bi is either block(∆i; Ξi; Γi).e or hndl(∆i; Ξi; Γi; s).e, and
dom(Γi) = dom(Γ) for each i

` P

` Φ Φ ` Fi : Φ(fi) for 1 ≤ i ≤ n (dom(Φ) = {f1, . . . , fn})

` f1 = F1, . . . , fn = Fn

Bibliography

[1] Mark Aiken, Manuel Fähndrich, Chris Hawblitzel, Galen Hunt, and James Larus. Decon-
structing process isolation. Technical Report MSR-TR-2006-43, Microsoft Research, Red-
mond, WA, 2006.

[2] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Technical Report
86-727, Cornell University, Ithaca, NY, 1986.

[3] Andrew W. Appel. Foundational proof-carrying code. In 16th Annual IEEE Symposium on
Logic in Computer Science (LICS), June 2001.

[4] Andrew W. Appel and Amy P. Felty. A semantic model of types and machine instructions
for proof-carrying code. In Proceedings of the Twenty-Seventh ACM Symposium on Principles of
Programming Languages, Boston, MA, 2000.

[5] David Aspinall, Lennart Beringer, Martin Hofmann, Hans-Wolfgang Loidl, and Alberto
Momigliano. A program logic for resource verification. In Proceedings of the International
Conference on Theorem Proving in Higher-Order Logics, September 2004.

[6] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gün Sirer, Marc E. Fiuczynski,
David Becker, Craig Chambers, and Susan Eggers. Extensibility, safety and performance
in the SPIN operating system. In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, pages 267–284, Copper Mountain, Colorado, 1995.

[7] David Chess, Colin Harrison, and Aaron Kershenbaum. Mobile Agents: Are They a Good
Idea? Technical Report RC 19887 (December 21, 1994 – Declassified March 16, 1995), IBM T.
J. Watson Research Center, Yorktown Heights, NY, 1994.

[8] Christopher Colby, Peter Lee, George C. Necula, Fred Blau, Ken Cline, and Mark Plesko. A
certifying compiler for Java. In ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM Press, June 2000.

[9] The ConCert project home page. http://www.cs.cmu.edu/˜concert/ .

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, second edition, 2001. Fourth printing, 2003.

[11] Karl Crary. Personal communication.

[12] Karl Crary. Typed compilation of inclusive subtyping. In Proceedings of the Fifth ACM SIG-
PLAN International Conference on Functional Programming (ICFP), 2000.

139

140 BIBLIOGRAPHY

[13] Karl Crary. Toward a foundational typed assembly language. Technical Report CMU-CS-02-
196, Carnegie Mellon University, Pittsburgh, PA, December 2002.

[14] Karl Crary. Toward a foundational typed assembly language. In Proceedings of the Thirtieth
ACM Symposium on Principles of Programming Languages, pages 198–212, New Orleans, Jan-
uary 2003.

[15] Karl Crary and Susmit Sarkar. Foundational certified code in a metalogical framework. In
Proceedings of the Conference on Automated Deduction (CADE-19), Miami, FL, July 2003.

[16] Karl Crary and Joseph C. Vanderwaart. An expressive, scalable type theory for certified code.
In Proceedings of the Seventh ACM SIGPLAN International Conference on Functional Programming
(ICFP), pages 191–205, Pittsburgh, PA, October 2002.

[17] Karl Crary and Stephanie Weirich. Flexible type analysis. In Proceedings of the Fourth ACM
SIGPLAN International Conference on Functional Programming (ICFP), pages 233–248, Septem-
ber 1999.

[18] Karl Crary and Stephanie Weirich. Resource bound certification. In Proceedings of the Twenty-
Seventh ACM Symposium on Principles of Programming Languages, Boston, MA, 2000.

[19] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in type-
erasure semantics. In Proceedings of the Third ACM SIGPLAN International Conference on Func-
tional Programming (ICFP), pages 301–312, 1998.

[20] Sophia Drossopoulou and Susan Eisenbach. Java is Type Safe — Probably. In Proceedings of
the Eleventh European Conference on Object-Oriented Programming (ECOOP 1997), volume 1241
of Lecture Notes in Computer Science, pages 389–418. Springer-Verlag, June 1997.

[21] R. Kent Dybvig. The Scheme Programming Language. The MIT Press, third edition, 2003. Full
text online at http://www.scheme.com/tspl3/ .

[22] R. Kent Dybvig and Robert Hieb. Engines from continuations. Computer Languages, 14(2):109–
123, 1989.

[23] Marc Feeley. Polling efficiently on stock hardware. In Proceedings of the ACM SIGPLAN Confer-
ence on Functional Programming and Computer Architecture, pages 179–187, Copenhagen, Den-
mark, June 1993.

[24] Folding@home. http://folding.stanford.edu .

[25] Stephen N. Freund and John C. Mitchell. A type system for object initialization in the Java
bytecode language. ACM Transactions on Programming Languages and Systems, 21(6):1196–
1250, November 1999.

[26] Stephen N. Freund and John C. Mitchell. A type system for the Java bytecode language and
verifier. Journal of Automated Reasoning, 2003.

[27] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de l’arithmétique d’ordre
supérieur. PhD thesis, Université Paris VII, 1972.

BIBLIOGRAPHY 141

[28] Nadeem A. Hamid, Zhong Shao, Valery Trifonov, Stefan Monnier, and Zhaozhong Ni. A
syntactic approach to foundational proof-carrying code. In 17th Annual IEEE Symposium on
Logic in Computer Science (LICS), 2002.

[29] Nadeem A. Hamid, Zhong Shao, Valery Trifonov, Stefan Monnier, and Zhaozhong Ni. A syn-
tactic approach to foundational proof-carrying code. Journal of Automated Reasoning, 31:191–
229, December 2003.

[30] Robert Harper and Karl Crary. How to believe a Twelf proof. Online at
http://www.cs.cmu.edu/˜rwh/papers/how/believe-twelf .pdf , 2005.

[31] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal
of the Association for Computing Machinery, 40(1):143–184, January 1993.

[32] Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF type
theory. Technical Report CMU-CS-00-148, Carnegie Mellon University, July 2000.

[33] Robert Harper and Chris Stone. A type-theoretic interpretation of Standard ML. In Gordon
Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language, and Interaction: Essays in
Honor of Robin Milner. MIT Press, 2000.

[34] Christopher T. Haynes and Daniel P. Friedman. Abstracting timed preemption with engines.
Computer Languages, 12(2):102–121, 1987.

[35] M. Hofmann. Linear types and non-size increasing polynomial time computation. In 14th
Annual IEEE Symposium on Logic in Computer Science (LICS), Trento, Italy, July 1999.

[36] Martin Hofmann and Steffen Jost. Static prediction of heap space usage for first-order func-
tional programs. In Proceedings of the Thirtieth ACM Symposium on Principles of Programming
Languages, pages 185–197, New Orleans, LA, January 2003.

[37] Galen Hunt, James Larus, Martı́n Abadi, Mark Aiken, Paul Barham, Manuel Fähndrich, Chris
Hawblitzel, Orion Hodson, Stephen Levi, Nick Murphy, Bjarne Steensgaard, David Tarditi,
Ted Wobber, and Brian Zill. An overview of the singularity project. Technical Report MSR-
TR-2005-135, Microsoft Research, Redmond, WA, 2005.

[38] Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual, 1999.

[39] Intel Corporation. IA-32 Intel Architecture Optimization Reference Manual, 2006. Order Number
248966-013US.

[40] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on
Software Engineering, SE-3(2):125–143, March 1977.

[41] Danny B. Lange and Mitsuru Oshima. Seven good reasons for mobile agents. Communications
of the ACM, 42(3):88–89, March 1999.

[42] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

[43] Udi Manber. Introduction to Algorithms: A Creative Approach. Addison-Wesley, 1989.

142 BIBLIOGRAPHY

[44] Frederick C. Mish, editor. Merriam-Webster’s Collegiate Dictionary. Merriam-Webster, Spring-
field, MA, tenth edition, 1994.

[45] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Frederick Smith,
David Walker, Stephanie Weirich, and Steve Zdancewic. TALx86: A realistic typed assembly
language. In ACM SIGPLAN Workshop on Compiler Support for System Software, 1999.

[46] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed assembly lan-
guage. Journal of Functional Programming, 12(1):43–88, January 2002.

[47] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed assembly
language. ACM Transactions on Programming Languages and Systems, 21(3):527–568, May 1999.

[48] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

[49] Mayur Naik. A type system equivalent to model checking. Master’s thesis, Purdue Univer-
sity, 2003.

[50] George Necula. Proof-carrying code. In Proceedings of the Twenty-Fourth ACM Symposium on
Principles of Programming Languages, pages 106–119, Paris, January 1997.

[51] George Necula and Peter Lee. Safe, untrusted agents using proof-carrying code. In Special
Issue on Mobile Agent Security, volume 1419 of Lecture Notes in Computer Science. Springer-
Verlag, October 1997.

[52] George C. Necula and Peter Lee. Safe kernel extensions without run-time checking. In Pro-
ceedings of the Second Symposium on Operating Systems Design and Implementation (OSDI ’96),
October 1996.

[53] George C. Necula and S. P. Rahul. Oracle-based checking of untrusted software. In Proceedings
of the Twenty-Eighth ACM Symposium on Principles of Programming Languages, pages 142–154,
London, United Kingdom, January 2001.

[54] George Ciprian Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University, Pitts-
burgh, PA, September 1998. Technical report CMU-CS-98-154.

[55] C. Paulin-Mohring. Inductive definitions in the system Coq—rules and properties. In In-
ternational Conference on Typed Lambda Calculi and Applications, volume 664 of Lecture Notes in
Computer Science. Springer-Verlag, 1993.

[56] Leaf Petersen. Certifying Compilation for Standard ML in a Type Analysis Framework. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, 2005. Published as CMU Technical Report CMU-
CS-05-135.

[57] Leaf Petersen, Perry Cheng, Robert Harper, and Chris Stone. Implementing the TILT internal
language. Technical Report CMU-CS-00-180, Carnegie Mellon University, 2000.

[58] Leaf Petersen, Robert Harper, Karl Crary, and Frank Pfenning. A type theory for memory
allocation and data layout. In Proceedings of the Thirtieth ACM Symposium on Principles of
Programming Languages, New Orleans, LA, January 2003.

BIBLIOGRAPHY 143

[59] Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-logical frame-
work for deductive systems. In Proceedings of the Conference on Automated Deduction (CADE-
16), pages 202–206, July 1999.

[60] Benjamin C. Pierce. Programming with Intersection Types and Bounded Polymorphism. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, 1991.

[61] Vijay Saraswat. Java is not type-safe, 1997. Available at
http://citeseer.ist.psu.edu/saraswat97java.html.

[62] SETI@home. http://setiathome.ssl.berkeley.edu .

[63] Dorai Sitaram. Teach yourself Scheme in fixnum days. Online at
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-sc heme.html , 2004.

[64] Raymie Stata and Martı́n Abadi. A type system for Java bytecode subroutines. Technical
Report 158, Digital Systems Research Center (SRC), 1998.

[65] Guy L. Steele Jr. Growing a language. Higher-Order and Symbolic Computation, 12:221–236,
1999.

[66] Sun Microsystems. Javasoft ships Java 1.0. Press release, January 1996.

[67] Andrew S. Tanenbaum, Jorrit N. Herder, and Herbert Bos. Can we make operating systems
reliable and secure? Computer, 39(5):44–51, May 2006.

[68] Joseph C. Vanderwaart and Karl Crary. A typed interface for garbage collection. In Proceed-
ings of the Workshop on Types in Language Design and Implementation (TLDI), New Orleans, LA,
January 2003.

[69] Joseph C. Vanderwaart and Karl Crary. Foundational typed assembly language for grid com-
puting. Technical Report CMU-CS-04-104, Carnegie Mellon University, 2004.

[70] J. B. Wells. Typability and type checking in System F are equivalent and undecidable. Annals
of Pure and Applied Logic, 98(1–3):111–156, 1999.

[71] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Informa-
tion and Computation, 115(1):38–94, 1994.

[72] Hongwei Xi and Robert Harper. A dependently typed assembly language. In Proceedings of
the Sixth ACM SIGPLAN International Conference on Functional Programming (ICFP), Florence,
Italy, September 2001.

